Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Lazy eye” disorder – a promising new therapeutic approach

23.04.2013
A research team led by Dr. Robert Hess from McGill University and the Research Institute of the McGill University Health Centre (RI-MUHC) has used the popular puzzle video game Tetris in an innovative approach to treat adult amblyopia, commonly known as “lazy eye”.

By distributing information between the two eyes in a complementary fashion, the video game trains both eyes to work together, which is counter to previous treatments for the disorder (e.g. patching).

This medical breakthrough provides direct evidence that alleviating suppression of the weaker eye, by forcing both eyes to cooperate, increases the level of plasticity in the brain and allows the amblyopic brain to relearn. The research is published in the prestigious journal Current Biology.

Amblyopia is the most common cause of visual impairment in childhood, affecting up to 3 per cent of the population. It is caused by poor processing in the brain, which results in suppression of the weaker eye by the stronger eye. Previous treatments for the disorder, which have focused largely on covering the stronger eye in order to force the weaker eye to work, have proven only partially successful in children and have been ineffective in adults.

“The key to improving vision for adults, who currently have no other treatment options, was to set up conditions that would enable the two eyes to cooperate for the first time in a given task,” says Dr. Robert Hess, senior author of the paper and Director of Research Department of Ophthalmology at the RI-MUHC and at McGill University.

According to Dr. Hess and his colleagues, the adult human brain has a significant degree of plasticity and this provides the basis for treating a range of conditions where vision has been lost as a result of a disrupted period of early visual development in childhood. The researchers examined the potential of treating amblyopic adults using the video game Tetris, which involves connecting different shaped blocks as they fall to the ground.

“Using head-mounted video goggles we were able to display the game dichoptically, where one eye was allowed to see only the falling objects, and the other eye was allowed to see only the ground plane objects,” explains Dr. Hess, who also serves as director of McGill Vision Research. “Forcing the eyes to work together, we believed, would improve vision in the lazy eye.”

The researchers tested a sample of 18 adults with amblyopia. Nine participants played the game monocularly with the weaker eye, while the stronger eye was patched; the other nine played the same game dichoptically, where each eye was allowed to view a separate part of the game. After two weeks, the group playing the dichoptic game showed a dramatic improvement in the vision of the weaker eye as well as in 3-D depth perception. When the monocular patching group, who had showed only a moderate improvement, was switched to the new dichoptic training, the vision of this group also improved dramatically.

The suitability of this treatment in children will be assessed later this year in a clinical trial across North America.

About this study:

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR).

This Correspondence was co-authored by Jinrong Li, Daming Deng and Minbin Yu (State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China); Benjamin Thompson (Department of Optometry and Vision Science, University of Auckland, New Zealand); Lily Y.L. Chan (School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China); and Robert F. Hess (Department of Ophthalmology, McGill University and RI-MUHC, Montreal, Canada).

The Correspondence is now available at the following link: http://www.cell.com/current-biology/abstract/S0960-9822(13)00094-8

Useful links

Current Biology:cell.com/current-biology
McGill University Health Centre (MUHC): muhc.ca
Research Institute of the MUHC (RI-MUHC): muhc.ca/research
McGill University: mcgill.ca
Contact:
Julie Robert
Public Affairs and Strategic Planning
McGill University Health Centre
514 934 1934 ext. 71381
julie.robert@muhc.mcgill.ca
muhc.ca | facebook.com/cusm.muhc

Julie Robert | McGill University Health Centre
Further information:
http://www.muhc.ca
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

nachricht How herpesviruses shape the immune system
09.01.2019 | German Center for Infection Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>