Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lab-on-a-chip measures mechanics of bacteria colonies

02.07.2009
Researchers at the University of Michigan have devised a microscale tool to help them understand the mechanical behavior of biofilms, slimy colonies of bacteria involved in most human infectious diseases.

Most bacteria in nature take the form of biofilms. Bacteria are single-celled organisms, but they rarely live alone, said John Younger, associate chair for research in the Department of Emergency Medicine at the U-M Health System. Younger is a co-author of a paper about the research that will be the cover story of the July 7 edition of Langmuir.

The new tool is a microfluidic device, also known as a "lab-on-a-chip." Representing a new application of microfluidics, the device measures biofilms' resistance to pressure. Biofilms experience various kinds of pressure in nature and in the body as they squeeze through capillaries and adhere to the surfaces of medical devices, for example.

"If you want to understand biofilms and their life cycle, you need to consider their genetics, but also their mechanical properties. You need to think of biofilms as materials that respond to forces, because how they live in the environment depends on that response," said Mike Solomon, associate professor of chemical engineering and macromolecular science and engineering, who is senior author of the paper.

Mechanical forces are at play when our bodies defend against these bacterial colonies as well, Younger says.

"We think a lot of host defense boils down to doing some kind of physical work on these materials, from commonplace events like hand-washing and coughing to more mysterious processes like removing them out of the bloodstream during a serious infection," he said. "You can study gene expression patterns as much as you want, but until you know when the materials will bend or break, you don't really know what the immune system has to do from a physical perspective to fight this opponent."

Researchers haven't studied these properties yet because there hasn't been a good way to examine biofilms at the appropriate scale.

The U-M microfluidic device provides the right scale. The channel-etched chip, made from a flexible polymer, allows researchers to study minute samples of between 50 and 500 bacterial cells that form biofilms of 10-50 microns in size. A micron is one-millionth of a meter. A human hair is about 100 microns wide.

Such small samples behave in the device as they do in the body. Tools that require larger samples don't always give an accurate picture of how a particular substance behaves on the smallest scales.

The researchers found that the biofilms they studied had a greater elasticity than previous methods had measured. They also discovered a "strain hardening response," which means that the more pressure they applied to the biofilms, the more resistance the materials put forth.

If doctors and engineers can gain a greater understanding of how biofilms behave, they could perhaps design medical equipment that is more difficult for the bacteria to adhere to, Younger said.

The experiments were performed on colonies of Staphylococcus epidermidis and Klebsiella pneumoniae, which are known to cause infections in hospitals.

The new microfluidic device could also be used to measure the resistance of various other soft-solid materials in the consumer products, food science, biomaterials and pharmaceutical fields.

The paper is called, "Flexible Microfluidic Device for Mechanical Property Characterization of Soft Viscoelastic Solids Such as Bacterial Biofilms." The first author is Danial Hohne, a recently-graduated Ph.D. student in the Department of Chemical Engineering.

The research is funded by the National Institutes of Health, the National Institute of General Medical Sciences, the U-M Center for Computational Medicine and Biology and the Department of Emergency Medicine.

For more information:

Michael Solomon:
http://www.engin.umich.edu/dept/cheme/people/solomon.html
John Younger:
http://sitemaker.umich.edu/younger/the_younger_lab
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://www.engin.umich.edu/

More articles from Health and Medicine:

nachricht Novel bone imaging approach provides insights into the progression of knee osteoarthritis
15.07.2020 | Society of Nuclear Medicine and Molecular Imaging

nachricht UTMB researchers have discovered a new antiviral mechanism for dengue therapeutics
14.07.2020 | University of Texas Medical Branch at Galveston

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Tiny bubbles make a quantum leap

15.07.2020 | Physics and Astronomy

Higher-order topology found in 2D crystal

15.07.2020 | Materials Sciences

Russian scientists have discovered a new physical paradox

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>