Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La Jolla Institute validates Type 1 diabetes computer model's predictive success through lab testing

09.12.2010
Team finds new software accurately predicts key information on nasal insulin treatment

A La Jolla Institute team, led by leading type 1 diabetes researcher Matthias von Herrath, M.D., has demonstrated the effectiveness of a recently developed computer model in predicting key information about nasal insulin treatment regimens in type 1 (juvenile) diabetes. Development of the software, the Type 1 Diabetes PhysioLab® Platform, was funded through the peer-reviewed grant program of the American Diabetes Association.

The findings, which also showed the platform's ability to predict critical type 1 diabetes molecular "biomarkers," were published in the December issue of the scientific journal Diabetes, and further validate the importance of the new model as a valuable research tool in type 1 diabetes. The software is designed to enable researchers to rapidly streamline laboratory research through the evaluation of alternative scenarios for therapeutic strategies that show the most promise for working in humans.

"Since laboratory studies can cost hundreds of thousands of dollars, and early stage human clinical trials can cost $10 million dollars or more, predicting the right conditions to try is important," said Dr. von Herrath, director of the Type 1 Diabetes Research Center at the La Jolla Institute for Allergy & Immunology, where the studies were conducted.

"We've found that using this in silico (computer analysis) prediction platform can quicken the pace and effectiveness of type 1 diabetes research," he continued. "By allowing us to pre-test our theories in computer models, we can ensure that the more time-intensive and costly process of laboratory testing is focused on the most promising therapeutic strategies, with the greatest chance of success."

The platform, developed by Entelos Inc., a life sciences company specializing in predictive technologies, has previously been shown to successfully predict various data from published type 1 diabetes experiments. Dr. von Herrath's team used a different approach to test the model, asking it to predict the outcome of a hypothetical experiment on nasal insulin dosing frequency in animal models that had not yet been performed. The prediction was then tested in the laboratory, where its results were confirmed.

In addition, he said, the model was able to accurately identify the particular time frame at which key type 1 diabetes "biomarkers" kicked in. Biomarkers are specific cell types or proteins that tell researchers at what point a therapeutic option is working or when it is time to start treatment. In the case of the La Jolla Institute study, the model successfully predicted the onset of biomarkers indicating beta cell protection in the NOD mouse.

"The model accurately predicted that implementing a low frequency nasal insulin dosing regimen in animal models was more beneficial in controlling type 1 diabetes than a high frequency regimen," said Dr. von Herrath, noting that the software's prediction of the biomarkers was key in this process. "These results confirmed our hypotheses on the benefits of low-frequency nasal insulin dosing. But even more importantly, the advantage of applying computer modeling in optimizing the therapeutic efficacy of nasal insulin immunotherapy was confirmed."

The results were reported in the paper "Virtual Optimization of Nasal Insulin Therapy Predicts Immunization Frequency To Be Crucial for Diabetes Protection." Dr. von Herrath was senior author on the paper and La Jolla Institute scientist Georgia Fousteri, Ph.D., and Jason Chan, Ph.D., from Entelos' R&D group, were first co-authors.

The Type 1 Diabetes PhysioLab® Platform is a large-scale mathematical model of disease pathogenesis based on non-obese diabetic (NOD) mice. The platform was developed with input from an independent scientific team of leading type 1 diabetes experts. The research support group of the American Diabetes Association funded the work of the software's development to provide a new scientific tool for enhancing the speed and effectiveness of type 1 diabetes research.

More than 400,000 children worldwide suffer from type 1 diabetes, a chronic disease that can lead to severe complications, such as blindness, cardiovascular disease, renal disease, coma or even death.

The platform, developed over two years, simulates autoimmune processes and subsequent destruction of pancreatic beta cells from birth through frank diabetes onset (hyperglycemia). The destruction of insulin-producing beta cells in the pancreas is the underlying cause of type 1 diabetes.

Specifically, Dr. von Herrath's team employed the model to investigate the possible mechanisms underlying the effectiveness of nasal insulin therapy, using the B: 9-23 peptide. "The experimental aim was to evaluate the impact of dose, frequency of administration and age at treatment on key molecular mechanisms and optimal therapeutic outcome," he said.

Using parameters input by the scientific team, the model accurately predicted that less frequent doses of nasal insulin, started at an early disease stage, would protect more effectively against beta cell destruction than higher frequency doses in NOD mice.

Dr. von Herrath added that the positive results add credence to the idea of creating computer models for analyzing therapeutic interventions in human disease. "These results support the development and application of humanized platforms for the design of clinical trials," he said.

About La Jolla Institute

Founded in 1988, the La Jolla Institute for Allergy & Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 100 Ph.D.s and M.D.s. For more information, go to www.liai.org

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>