Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kessler stroke researchers explore five new avenues for rehabilitation research

27.11.2013
Treatments based on behavioral or non-invasive physiological stimulation show greatest potential

Because the concept of permanent neurological injury has given way to recognition of the brain’s potential for long-term regeneration ad reorganization, rehabilitations strategies are undergoing radical changes. The potential for five new translational interventions was examined in an article published ahead of print on November 13 by Neurology Clinical Practice: Barrett AM, Oh-Park M, Chen P, Ifejika NL: Five New Things in Neurorehabilitation. doi: 10.1212/01.CPJ.0000437088.98407.fa. Drs. Barrett, Oh-Park and Chen are affiliated with Kessler Foundation. Dr. Ifejika is with the University of Texas Medical School at Houston.

Medical resources are limited, so it is important to focus on areas of greatest potential, according to Dr. Barrett, and strive for advances that translate to effective treatments in the shortest possible timeframes. An emphasis on experience-dependent learning is advised, as well as biological techniques that induce a permissive state for the development of new, optimal, functional brain activation patterns. “The five treatments we identified are based on behavioral (1, 2, 3), or non-invasive physiological stimulation (4, 5),” said Dr. Barrett. “While these have been explored primarily in stroke rehabilitation, they are potentially applicable to other neurological conditions such as brain injury, spinal cord injury and multiple sclerosis.”

Constraint-induced movement therapy, and other intensive, experience-dependent learning, may improve rehabilitation outcomes in people with hemiparesis from stroke and other brain disorders.

2. Constraint-induced language therapy, and other methods to stimulate speech and motor output, may improve rehabilitation outcomes in aphasia.

Prism adaptation therapy, and therapies using virtual feedback and implicitly integrating 3-D motor and perceptual function, may improve function in spatial neglect.

Transcranial magnetic stimulation may induce a permissive brain state therapeutic for depression and promoting better motor and cognitive recovery.

Transcranial direct current stimulation might promote better mood, motor and cognitive rehabilitation outcomes, and has an appealing risk/cost profile for feasible future implementation.

Funding: Supported by Kessler Foundation (AMB, MO-P, PC), the National Institutes of Health (R01NS 055808 and K24HD062647: PI Barrett) and the Department of Education (NIDRR grant H133G120203).

About Stroke Rehabilitation Research at Kessler Foundation

Research studies span all domains of post-stroke cognitive dysfunction, but emphasize hidden disabilities after stroke, including hidden disabilities of functional vision (spatial bias and spatial neglect). Students, resident physicians, and post-doctoral trainees are mentored in translational neuroscience of rehabilitation. Dr. Barrett and her colleagues work closely with the clinical staff at Kessler Institute for Rehabilitation. Among their collaborative efforts are the founding of the Network for Spatial Neglect and development of the Kessler Foundation Neglect Assessment Process (KF-NAPTM). Stroke Research receives funding from the Department of Education/NIDRR; the National Institutes of Health/NICHD/NCMRR; Kessler Foundation; the Healthcare Foundation of New Jersey; and the Wallerstein Foundation for Geriatric Improvement. Scientists have faculty appointments at Rutgers New Jersey Medical School.

About A.M. Barrett, MD

A.M. Barrett, MD, a cognitive neurologist and clinical researcher, is director of Stroke Rehabilitation Research at Kessler Foundation, as well as chief of Neurorehabilitation Program Innovation at Kessler Institute for Rehabilitation. Her focus is brain-behavior relationships from the perspectives of cognitive neurology, cognitive neuroscience, and cognitive neurorehabilitation. Dr. Barrett is an expert in hidden cognitive disabilities after stroke, which contribute to safety problems & rehospitalization, increased caregiver burden, & poor hospital-to-home transition. She is a founder of the Network for Spatial Neglect, which promotes multidisciplinary research for this underdiagnosed hidden disability. Dr. Barrett is also professor of physical medicine & rehabilitation at Rutgers New Jersey Medical School and adjunct professor of neurology at Columbia University School of Medicine. She is a former president of the American Society for Neurorehabilitation.

Dr. Barrett is author of the reference article Spatial Neglect on emedicine.com. A recent publication is Barrett AM. Picturing the body in spatial neglect: descending a staircase. Neurology. 2013 Oct 8;81(15):1280-1.About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

KesslerFoundation.org

facebook.com/KesslerFoundation

http://twitter.com/#!/KesslerFdn

Carolann Murphy, PA; 973.324.8382; CMurphy@KesslerFoundation.org

Lauren Scrivo, 973.324.8384/973.768.6583 (cell); LScrivo@KesslerFoundation.org

Carolann Murphy | EurekAlert!
Further information:
http://www.KesslerFoundation.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>