Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New islet cell transplant procedure offers improved outcomes for patients with type 1 diabetes

20.09.2013
Advanced technique for harvesting insulin-producing cells offers an alternative to transplant surgery

The latest approach to islet transplantation, in which clusters of insulin-producing cells known as islets are transplanted from a donor pancreas into another person's liver, has produced substantially improved results for patients with type 1 diabetes, and may offer a more durable alternative to a whole pancreas transplant.

Participants in the new study received islet cells isolated from the pancreas of organ donors to help their bodies produce insulin, the life-sustaining hormone responsible for absorbing glucose from the blood. The new approach, which allowed the harvested cells a short period of rest prior to transplant, resulted in increased levels of insulin production to the degree that patients were able to discontinue daily insulin injections. Results of the study, conducted by researchers at the Perelman School of Medicine at the University of Pennsylvania, appeared recently in the journal Diabetes.

In the study, investigators used an advanced technique to isolate and harvest islet cells from donor pancreases. Unlike prior methods in which isolated islet cells were immediately transferred to the recipient, the new technique allowed the extracted cells to rest in a controlled environment for three days prior to transplant. Inflammation that occurs when the cells are harvested can often predispose the recipient to rejection after transplantation. However, by allowing the cells to rest, the inflammation – and possibility of rejection – is reduced. Ultimately, the resting period also resulted in a more efficient process by allowing investigators to use fewer islet cells than previous methods which required cells from two or more donor pancreases achieve similar results. Despite fewer islet cells being transplanted, the new approach resulted in significantly improved islet cell function.

"These results show that islet transplantation has become a more promising method for replacing the islet cells in type 1 diabetes patients experiencing severe problems with low blood sugar," said lead author Michael R. Rickels, MD, MS, medical director for the Pancreatic Islet Cell Transplantation Program and associate professor of Medicine in Endocrinology, Diabetes and Metabolism at Penn Medicine. "We've seen positive long-term results with this technique, and are excited to be able to offer the option to our patients, where currently a whole pancreas transplant requiring major surgery is the only available alternative."

The new approach, known as the CIT07 protocol, was developed by the National Institutes of Health and sponsored by the Clinical Islet Transplantation (CIT) Consortium, in which Penn has served as a member since 2004. Under the new protocol, which measures islet cell mass, all patients involved in the study were able to come off insulin therapy and remained so after at least one year with no loss of the transplanted cell mass.

Typically, patients with type 1 diabetes must self-administer multiple injections of insulin per day, or receive it by a continuous infusion from a wearable pump. However, insulin therapy is difficult to calibrate to the body's changing energy needs, and patients are required to frequently check their blood sugar levels and adjust their insulin dosage. Varying levels of insulin in the body often results in low blood sugar (hypoglycemia), which can induce a coma or other medical emergency. Conversely, islet transplantation, when effective, results in natural, internal self-monitoring and adjustment of insulin levels to keep blood sugar levels in a normal range (homeostasis).

"The fact that significantly more transplanted islet cells in the new protocol are able to successfully integrate and continue producing insulin at least one year later compared to prior studies, gives us hope that more type 1 diabetes patients will be able to live full and healthy lives free from the dangers of hypoglycemia and the burden of administering insulin," said senior author and principal investigator Ali Naji, MD, PhD, surgical director of the Kidney and Pancreas Transplant Program at Penn Medicine.

Roughly five to ten percent of all people with diabetes have Type 1 diabetes. Previously known as juvenile-onset diabetes, Type 1 diabetes is typically first diagnosed in children and young adults and persists throughout life. Patients with the disease do not produce insulin because of autoimmune destruction of the insulin producing cells in the pancreas. Without insulin, patients cannot convert sugar, starches, and other food into energy needed for survival. When left untreated, Type 1 diabetes is a potentially fatal disease.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Katie Delach | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>