Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Therapy Method For The Treatment Of Brain Tumors

23.05.2011
The Fraunhofer Institute for Cell Therapy and Immunology IZI and the American company Northwest Biotherapeutics Inc. are cooperating in the development of production processes and establishment of an innovative therapy method for the treatment of glioblastomas (brain tumors) in Europe.

Northwest Biotherapeutics has developed an autologous (the body's own) “DCVax®” immunotherapy for various types of cancer. In the USA, the company is already conducting clinical trials for the treatment of glioblastomas and other types of cancer. Such immunotherapies for cancer are beginning to succeed after many decades of research and development. DCVax® is one of the leading technologies at the forefront of this new approach to cancer treatment.

In order to make this DCVax® therapy also available to patients in Europe, the company has now entered cooperation with the Fraunhofer IZI. The initial phase of this cooperation comprises adapting the production processes to European regulations and standards, implementing them in the Fraunhofer IZI's facilities and comprehensive quality management system and obtaining the required official authorizations. Later on, the clinical trial products are supposed to be provided by the Fraunhofer IZI.

The current methods for the treatment of glioblastomas are limited and do not yield the desired success: Patients typically only live for about 14 months after diagnosis. Treatment options are restricted to surgical intervention, irradiation and chemotherapy, which are all associated with considerable risks and side effects. The autologous immunotherapy DCVax® Brain is now expected to provide treatment with improved therapeutic success (potentially adding years of survival) and attenuated side effects.

The autologous immunotherapy DCVax® Brain is based on dendritic cells, which play a key role in the regulation of the immune system. As tumor tissues develop from the body's own cells, the immune system often does not recognize them as foreign tissues and therefore does not attack them. In the DCVax® method, the dendritic cells are primed to specific antigens (bio-markers) that exist on the tumor cells. Consequently, the modified cells stimulate the T cells, the B cells and antibodies, and other agents of the immune system to combat the corresponding tumor cells.

The initial step is the isolation of immune cells (monocytes) from the patient's blood, followed by their cultivation and maturation into dendritic cells in the laboratory. In this process, the cells are co-incubated with fragments of the patient's tumor and primed to the corresponding specific tumor antigens. Several injections of the DCVax® dendritic cells thus generated will stimulate the patient's immune system to combat all tumor cells that bear the corresponding tumor antigens on their surface. This technology offers an important new approach to treating cancer, and is expected to be applicable to all cancers.

contact
Dr. Gerno Schmiedeknecht
Phone +49 341 35536 9705
gerno.schmiedeknecht@izi.fraunhofer.de
The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society. At present, the Fraunhofer-Gesellschaft maintains more than 80 research units in Germany, including 60 Fraunhofer Institutes. The majority of the more than 18,000 staff are qualified scientists and engineers, who work with an annual research budget of €1.66 billion. Of this sum, more than €1.40 billion is generated through contract research.

The Fraunhofer Institute for Cell Therapy and Immunology IZI is member of the Fraunhofer Group for Life Sciences. Its objective being to find solutions to specific problems at the interfaces between medicine, life sciences and engineering for partners active in medicine-related industries and businesses. The Institute’s core competencies are to be found in regenerative medicine, or more precisely in cell-therapeutic methods of regenerating non-functioning tissue and organs through to the biological substitution with tissue cultivated in vitro (tissue engineering). In order for the living organism to accept the tissues without any difficulty, it is necessary to study cellular and immunological defense and control mechanisms and take these into account during process and product development. These core competencies entail a multiplicity of tasks to be solved by new products and processes. The Institute works especially closely with hospital institutions, performing quality tests and clinical studies on their behalf. Additionally it also provides assistance in obtaining manufacturing licenses and certifications.

Fraunhofer Institute for Cell Therapy and Immunology
Press and Public Relations
Jens Augustin
Perlickstraße 1
04103 Leipzig
Germany
Phone +49 341 35536-9320
Fax +49 341 35536-8-9320
jens.augustin@izi.fraunhofer.de

| Fraunhofer-Institut
Further information:
http://www.izi.fraunhofer.de

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>