Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation halts fat-burning

04.01.2017

Scientists at the University of Bonn have shown in mice that excess pounds can simply be melted away by converting unwanted white fat cells into energy-consuming brown slimming cells. Can this interesting approach also be used to combat obesity? In a recent study, the university researchers show why the inflammatory responses that often occur in overweight people block this kind of fat cell conversion. However, there may be a starting point to bypass this inhibition. The results have now been published in the scientific journal “Cell Reports”.

The vision is enticing: if bodyfat can simply be melted away with new active ingredients, then this could also prevent the widespread consequences of obesity – such as joint problems, diabetes and cardiovascular diseases. The team around Alexander Pfeifer from the Institute of Pharmacology and Toxicology at the University of Bonn has been researching how this could be possible for years.


Prof. Alexander Pfeifer from the Institute of Pharmacology and Toxicology at the University of Bonn.

Photo: Barbara Frommann/Uni Bonn

“In studies in mice, we have found various starting points to convert troublesome white fat cells into desirable brown fat cells,” reports Prof. Pfeifer. The brown cells possess an extremely high number of mitochondria – these cell power stations “burn” white fat by converting it into thermal energy. The result: If the number of brown cells increases, the mice significantly lose weight.

The signal path of the messenger cyclic guanosine monophosphate (cGMP) plays an important role in this fat conversion. “The desirable brown fat cells rely on cGMP,” explains Prof. Pfeifer. As the researchers have shown in various studies on mice, the widespread active ingredient sildenafil or a medication against pulmonary hypertension, for instance, can be used to reduce the number of white fat cells to the benefit of the brown fat cells and thus accelerate fat burning like a turbocharger.

The fat-burning turbocharger comes to a standstill in abdominal fat

Is this a possible option to effectively treat the significantly increasing obesity levels around the world and thus prevent serious complications? This is the question that the researchers are looking into in their current study. They gave mice a high-calorie diet and examined the changes in the animals’ fat tissue.

While hardly any inflammation occurred in the subcutaneous fat of obese mice and cGMP signaling was largely intact, things were very different for the deeper-lying abdominal fat: through the significant weight increase, inflammation had spread and the fat-burning turbocharger cGMP largely came to a standstill.

This uncovered a dual problem: abdominal fat is considered much more dangerous than subcutaneous fat because it triggers inflammation and can promote cardiovascular diseases, for instance. According to the latest results from researchers at the University of Bonn, this is also where cGMP, which is important for fat-burning, was largely blocked. The researchers thus asked themselves: Is it perhaps possible to remove this block?

Lead author Abhishek Sanyal from Prof. Pfeifer’s team looked into this question. He investigated in what way inflammation inhibits the cGMP signal path. “Tumor necrosis factor alpha (TNFalpha) plays an important role here,” reports Sanyal. “The inflammation factor TNFalpha suppresses the cGMP signal path and thus prevents white fat cells from being turned into brown fat cells.”

Using human subcutaneous and abdominal fat samples, the scientists, in cooperation with the University Hospital Leipzig and the Karolinska Institutet Stockholm (Sweden), find similar cahnges not only to rodents but also to the human organism. Although applications for obesity treatments in humans are still a long way off, the results indicate a direction for further research: “Obviously, one possible starting point in combatting obesity could be to inhibit the inflammatory response in abdominal fat while administering cGMP-stimulating active ingredients,” says Prof. Pfeifer to summarize the findings.

Publication: Interplay between obesity-induced inflammation and cGMP signaling in white adipose tissue, Cell Reports, DOI: 10.1016/j.celrep.2016.12.028

Media contact:

Prof. Alexander Pfeifer
Institute of Pharmacology and Toxicology
University of Bonn
Tel. +49 (0)228/28751300
E-mail: alexander.pfeifer@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>