Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How infection can lead to cancer

12.06.2012
New MIT study offers comprehensive look at chemical and genetic changes that occur as inflammation progresses to cancer

One of the biggest risk factors for liver, colon or stomach cancer is chronic inflammation of those organs, often caused by viral or bacterial infections. A new study from MIT offers the most comprehensive look yet at how such infections provoke tissues into becoming cancerous.

The study, which is appearing in the online edition of Proceedings of the National Academy of Sciences the week of June 11, tracked a variety of genetic and chemical changes in the livers and colons of mice infected with Helicobacter hepaticus, a bacterium similar to Helicobacter pylori, which causes stomach ulcers and cancer in humans.

The findings could help researchers develop ways to predict the health consequences of chronic inflammation, and design drugs to halt such inflammation.

"If you understand the mechanism, then you can design interventions," says Peter Dedon, an MIT professor of biological engineering. "For example, what if we develop ways to block or interrupt the toxic effects of the chronic inflammation?"

Dedon is one of four senior authors of the paper, along with Steven Tannenbaum, a professor of biological engineering and chemistry; James Fox, a professor of biological engineering and director of the Department of Comparative Medicine; and Gerald Wogan, a professor of biological engineering and chemistry. Lead author is Aswin Mangerich, a former MIT postdoc now at the University of Konstanz in Germany.

Too much of a good thing

For the past 30 years, Tannenbaum has led a group of MIT researchers dedicated to studying the link between chronic inflammation and cancer. Inflammation is the body's normal reaction to any kind of infection or damage, but when it goes on for too long, tissues can be damaged.

When the body's immune system detects pathogens or cell damage, it activates an influx of cells called macrophages and neutrophils. These cells' job is to engulf bacteria, dead cells and debris: proteins, nucleic acids and other molecules released by dead or damaged cells. As part of this process, the cells produce highly reactive chemicals that help degrade the bacteria.

"In doing this, in engulfing the bacteria and dumping these reactive chemicals on them, the chemicals also diffuse out into the tissue, and that's where the problem comes in," Dedon says.

If sustained over a long period, that inflammation can eventually lead to cancer. A recent study published in the journal The Lancet found that infections account for about 16 percent of new cancer cases worldwide.

Widespread damage

In the new MIT study, the researchers analyzed mice that were infected with H. hepaticus, which causes them to develop a condition similar to inflammatory bowel disease in humans. Over the course of 20 weeks, the mice developed chronic infections of the liver and colon, with some of the mice developing colon cancer.

Throughout the 20-week period, the researchers measured about a dozen different types of damage to DNA, RNA and proteins. They also examined tissue damage and measured which genes were turned on and off as the infection progressed. One of their key findings was that the liver and colon responded differently to infection.

In the colon, but not the liver, neutrophils secreted hypochlorous acid (also found in household bleach), which significantly damages proteins, DNA and RNA by adding a chlorine atom to them. The hypochlorous acid is meant to kill bacteria, but it also leaks into surrounding tissue and damages the epithelial cells of the colon.

The researchers found that levels of one of the chlorine-damage products in DNA and RNA, chlorocytosine, correlated well with the severity of the inflammation, which could allow them to predict the risk of chronic inflammation in patients with infections of the colon, liver or stomach. Tannenbaum recently identified another chlorine-damage product in proteins: chlorotyrosine, which correlates with inflammation. While these results point to an important role for neutrophils in inflammation and cancer, "we don't know yet if we can predict the risk for cancer from these damaged molecules," Dedon says.

Another difference the researchers found between the colon and the liver was that DNA repair systems became more active in the liver but less active in the colon, even though both were experiencing DNA damage. "It's possible that we have kind of a double whammy [in the colon]. You have this bacterium that suppresses DNA repair, at the same time that you have all this DNA damage happening in the tissue as a result of the immune response to the bacterium," Dedon says.

The researchers also identified several previously unknown types of damage to DNA in mice and humans, one of which involves oxidation of guanine, a building block of DNA, to two new products, spiroiminodihydantoin and guanidinohydanotoin.

In future studies, the MIT team plans to investigate the mechanisms of cancer development in more detail, including looking at why cells experience an increase in some types of DNA damage but not others.

The research was funded by the National Cancer Institute.

Written by Anne Trafton, MIT News Office

Anne Trafton | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>