Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection-fighting bandages for serious burns

25.02.2016

EPFL helped develop a technology aimed at reducing the death rate among victims of serious burns

Serious burn victims are immunocompromised and may be missing skin on parts of their body, and this makes them highly vulnerable to bacteria. Thanks to progress in intensive care, they are decreasingly likely to die from burn trauma. Death is more commonly the result of infections that can occur several months after being hospitalized. The bandages used to treat burns actually represent a real breeding ground for microbes.


Infection-fighting bandage for the treatment of severe burns.

Credit: © Murielle Michetti

To combat these bacteria, which are increasingly antibiotic-resistant, a consortium of Swiss researchers worked on a biological bandage able to accelerate the scarring process and, ultimately, prevent bacteria from multiplying.

The researchers focused on the formidable bacterium called Pseudomonas aeruginosa, the main cause of infections and death among serious burn victims. An article describing the new bandage, which was developed in part at EPFL, has just been published in Scientific Reports.

The technology is based on a biodegradable bandage made of animal collagen and 'progenitor' cells that can multiply quickly. First developed by the CHUV in 2005, these bandages hastened the healing process but did nothing to protect against microbes.

The researchers have now demonstrated that by combining these biological bandages with special molecules called dendrimers, it would be possible to not only speed up healing but also to put a stop to infections.

Halting bacterial proliferation

The bandage consists of a strip of gauze made from collagen to which progenitor cells and dendrimers have been added. When the bandage is placed on a bacteria-infected site, some of the dendrimers migrate and destroy the microbes located in the direct vicinity of the bandage. Other dendrimers remain inside the bandage.

"Bandages are a favorable environment for bacterial growth," said Dominique Pioletti, the head of EPFL's Laboratory of Biomechanical Orthopedics. "So some dendrimers have to remain in the bandage to destroy any intruders." With his team, the researcher's task was to find a way to incorporate dendrimers in the biological bandage. He then observed how the bacteria interacted with the new bandage.

Cutting the death rate

For hospital burn specialists, this technology meets an urgent need. "Currently, we have to take enormous precautions with our patients," said Lee Ann Laurent-Applegate, the head of the Regenerative Therapy Unit at the CHUV. "The bandages, which sometimes cover most parts of the body, need to be changed every day for several months. Yet that does not stop infections. And we cannot prescribe antibiotics to all patients as a preventive measure for fear of making the bacteria more resistant. With the new bandages, rather than treating infections, we will be preventing them. We are nipping the problem in the bud."

The new bandage will be tested in Zurich before they can be used in clinics.

###

This study is part of a research platform sponsored by SwissTransMed and led by Lee Ann Laurent-Applegate, the head of the Regenerative Therapy Unit at the CHUV, and Wassim Raffoul, the head of Plastic and Hand Surgery at the CHUV.

The platform brings together leading Swiss institutions specializing in serious burns. It includes the CHUV Burn Center, the Burn Center at Zurich University Hospital, EPFL, the University of Lausanne, the University of Geneva, the Geneva University Hospitals and the University of Bern.

Each of the participants played a role in a key stage of the project reported on in Scientific Reports.

Article in Scientific Reports: Anti-Microbial Dendrimers against Multidrug-Resistant P. aeruginosa Enhance the Angiogenic Effect of Biological Burn-wound Bandages

Media Contact

Dominique Pioletti
dominique.pioletti@epfl.ch
41-216-938-341

 @EPFL_en

http://www.epfl.ch/index.en.html 

Dominique Pioletti | EurekAlert!

Further reports about: EPFL Polytechnique aeruginosa bandage infections microbes progenitor progenitor cells

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>