Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor Air Pollution Increases Asthma Symptoms

23.02.2009
A study by researchers at Johns Hopkins University found an association between increasing levels of indoor particulate matter pollution and the severity of asthma symptoms among children.

The study, which followed a group of asthmatic children in Baltimore, Md., is among the first to examine the effects of indoor particulate matter pollution. The results are published in the February 2009 edition of the journal Environmental Health Perspectives.

Particulate matter is an airborne mixture of solid particles and liquid droplets. The solid particles come in numerous shapes and sizes and may be composed of different chemical components. Fine particles measure 2.5 microns or less in size (approximately 1/30th the diameter of a human hair) and can penetrate deep into the body’s respiratory system. Coarse particles fall between 2.5 and 10 microns in diameter.

These larger particles can also enter the respiratory system and can be produced indoors through activities such as cooking and dusting. The U.S. Environmental Protection Agency (EPA) regulates outdoor levels of fine particle pollution, but does not have a standard for coarse particle pollution. There are no regulations for indoor pollution.

For the study, researchers from the Center for Childhood Asthma in the Urban Environment—a joint center of the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine—followed 150 asthmatic children, ages 2 to 6, for six months. Environmental monitoring equipment was used to measure the air in the child’s bedroom for over three three-day intervals. Air measurements were taken at the beginning of the study, after 3 months and again after 6 months. Ninety-one percent of the children who participated in the study were African-American, from lower socioeconomic backgrounds, and spent most of their time indoors.

“We found that substantial increases in asthma symptoms were associated both with higher indoor concentrations of fine particles and with higher indoor concentrations of coarse particles,” said Meredith C. McCormack, MD, MHS, lead author of the study and an instructor with the Johns Hopkins School of Medicine.

For every 10 micrograms per cubic meter of air (ug/m3) increase in indoor coarse particle concentration, there was a 6 percent increase in the number of days of cough, wheeze, or chest tightness, after adjusting for a number of factors. For every 10 ug/m3 increase in fine particles measured indoors, there was a 7 percent increase in days of wheezing severe enough to limit speech and after adjusting for various factors, a 4 percent increase in days on which rescue medication was needed. In many cases, the level of indoor fine particle pollution measured was twice as high as the accepted standard for outdoor pollution established by the EPA.

“Children spend nearly 80 percent of their time indoors, which makes understanding the effects of indoor air very important,” said co-author, Gregory B. Diette, MD, an associate professor in the School of Medicine and co-director of the Center for Childhood Asthma in the Urban Environment.

“Improving indoor air quality and lowering indoor particulate matter concentrations may provide additional means of improving asthma health, especially for children living in inner cities,” added co-author, Patrick Breysse, PhD, a professor in the Johns Hopkins Bloomberg School of Public Health and co-director of the Center for Childhood Asthma in the Urban Environment.

Additional authors of “In Home Particle Concentrations and Childhood Asthma Morbidity” are Elizabeth C. Matsui, Nadia N. Hansel, D’Ann Williams, Jean Curtin-Brosnan and Peyton Eggleston.

The research was supported by National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the U.S. Environmental Protection Agency; and the Johns Hopkins NIEHS Center for Urban Environmental Health.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>