Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunotherapy could stop resistance to radiotherapy

01.10.2014

Treating cancers with immunotherapy and radiotherapy at the same time could stop them from becoming resistant to treatment, according to a study published in Cancer Research* today (Wednesday).

The researchers, based at The University of Manchester and funded by MedImmune, the global biologics research and development arm of AstraZeneca, and Cancer Research UK, found that combining the two treatments helped the immune system hunt down and destroy cancer cells that weren't killed by the initial radiotherapy in mice with breast, skin and bowel cancers.

Radiotherapy is a very successful treatment for many forms of cancer, but in cancer cells that it doesn't kill it can switch on a 'flag' on their surface, called PD-L1, that tricks the body's defences into thinking that cancerous cells pose no threat.

The immunotherapy works by blocking these 'flags' to reveal the true identity of cancer cells, allowing the immune system to see them for what they are and destroy them.

The approach improved survival and protected the mice against the disease from returning.

Dr Simon Dovedi, the lead researcher based at The University of Manchester and member of the Manchester Cancer Research Centre, said: "Using the body's own defences to treat cancers has huge potential with early phase clinical trials demonstrating exciting patient benefit but we are still at the early stages of understanding how best to use these types of treatments.

Combining certain immunotherapies with radiotherapy could make them even more effective and we're now looking to test this in clinical trial to see just how much of a difference it could make."

Professor Nic Jones, Cancer Research UK's chief clinician, said: "Around half of all cancer patients are given radiotherapy and it has been at the heart of helping improve survival rates so that today one in two cancer patients will survive for at least ten years. Doctors and researchers are constantly looking for ways to improve treatments and this approach could open the door to a whole new way of giving radiotherapy."

Dr Robert Wilkinson, Director of Oncology Research, MedImmune, said: "MedImmune is committed to developing strong science led collaborations, and supporting research that helps further advance our scientific understanding in the important area of immunotherapy. The findings described in the recent study with Cancer Research UK are extremely encouraging."

Cancer Research UK joined forces with The Christie NHS Foundation Trust and The University of Manchester to form the Manchester Cancer Research Centre allowing doctors and scientists to work closely together to turn scientific advances into patient benefits sooner.

###

Notes to editors:

*Dovedi, S.J., et al. Acquired resistance to fractionated radiation therapy can be overcome by concurrent PD-L1 blockade (2014) Cancer Research

Simon Shears | Eurek Alert!
Further information:
http://www.cancerresearchuk.org/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>