Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunity from H1N1 flu vaccine wears off rapidly

02.11.2015

Individuals who get the flu vaccine lose their immunity to the H1N1 influenza virus in about two years, according to an analysis led by the Hong Kong Polytechnic University.

It is generally believed that individuals who get the H1N1 flu vaccine lose their immunity to the H1N1 flu virus in about 10 years, but according to an analysis led by The Hong Kong Polytechnic University (PolyU), immunity lasts for two years.


Spatio-temporal patterns of H1N1 pdm and H3N2

H1N1, commonly known as “swine flu”, was a new flu strain that appeared in 2009 and quickly spread around the world, killing thousands of people. It is now a regular part of the annual flu season.

A research team in China, Australia and the United States used a mathematical model to map the spread of different flu strains between 2006 and 2015 and found H1N1 spread in a “skip and resurgence” pattern in Europe and Eastern Asia. H1N1 was expected to hit again in 2011/12, but no outbreak materialized in these regions. It skipped that year, but came back the next season.

Fundamental epidemiological theory explains this pattern: after the first waves of infection, the population built up immunity and the virus could not explode. But immunity wore off after a couple of years, so enough people were once again susceptible in 2013.

The “skip and resurgence” pattern was observed throughout Europe and Eastern Asia, including United Kingdom and China. However, North America was noticeably different —there was no skip year there.

“Since it was generally believed that all developed countries are highly connected by international flights, such a distinct pattern between Europe and Northern America is very surprising,” said Dr He. The researchers suspect different vaccination policies may play a role.

In Europe, less than 30% of the population gets vaccinated, compared to almost 40% in the United States and 30% in Canada. Despite its higher vaccination rates, North America had a much higher incidence rate and associated mortality of H1N1 in 2009 than Europe.

The take up rate of H1N1 in the United States is high. Does it mean that the incidence rate and associated mortality rate will necessarily be low? Different flu strains are actually in competition with one another. If one strain dominates, the others are unable to gain a large foothold in the population and do not spread. In North America, vaccination against another major seasonal influenza strain, H3N2, might have slowed the spread of H3N2, reducing competition with H1N1.

In contrast, Europe and Eastern Asia had an outbreak of H3N2 during the season that H1N1 skipped. But the years that H1N1 dominated, there were far fewer cases of H3N2.

Dr. He stressed, “Vaccination is still the most efficient way to protect humans against the flu. But if the viruses included in the seasonal flu vaccine do not match well against that year’s dominant flu strains, it will reduce effectiveness of vaccination, and infections will surge dramatically. More in-depth study on the impact of vaccination policy, more accurate prediction of future dominant strains and the design of better vaccinations is urgently needed.”

Besides the rapid loss of immunity, the transmission rate and the total number of infected population can be estimated with the mathematical model framework developed by Dr He. This study suggests that the dominance of H1N1 and H3N2 will alternate in the near future in many countries.

For their analysis, Dr He and his research team members, including Dr Yang Lin from the School of Nursing and Professor Michael Tse from the Department of Electronic and Information Engineering of PolyU, used confirmed influenza cases from 138 countries compiled in FluNet, a database set up by the World Health Organization to track the flu. Their mathematical model and research was endorsed by world renowned mathematicians and was published in Scientific Reports this year.

Press contacts:
Dr Daihai HE
Assistant Professor, Department of Applied Mathematics
The Hong Kong Polytechnic University
Telephone:(852) 2766-7864 / 5648-8408
E-mail:daihai.he@polyu.edu.hk

The Hong Kong Polytechnic University | Research SEA
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

Further reports about: H1N1 H3N2 flu flu vaccine mathematical model vaccination

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>