Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system marker tied to improved bone marrow transplant outcomes

17.09.2013
St. Jude Children's Research Hospital investigators prove that an immune marker predicts transplant success and improves selection of bone marrow donors

The risk of death following bone marrow transplantation can be reduced about 60 percent using a new technique to identify bone marrow donors who make the most potent cancer-fighting immune cells, according to research from St. Jude Children's Research Hospital. The findings appear in the September 16 online issue of the Journal of Clinical Oncology.


The new screening approach developed by St. Jude involves identifying donors who make the most potent version of specialized immune cells called natural killer (NK) cells. Illustrated is an NK cell destroying a cancer cell.

Credit: Joshua Stokes, St. Jude Children's Research Hospital

The research builds on an earlier St. Jude discovery that specialized immune cells called natural killer (NK) cells dispatched cancer cells more efficiently when the NK cells carried a particular version of a KIR protein on their surface. KIR is short for killer-cell immunoglobulin-like receptor. KIR proteins regulate NK cells.

For this study, researchers reviewed the outcomes of the 313 bone marrow transplants performed at St. Jude during the decade ending in January 2010. Investigators found that patients were far more likely to have survived the transplant and far less likely to have their disease progress if their new bone marrow came from donors whose NK cells included the same version of the protein, rather than the alternative form.

"This approach should dramatically improve the outcome for patients undergoing bone marrow transplantation, regardless of their age or underlying condition," said Wing Leung, M.D., Ph.D., the paper's corresponding author and chair of the St. Jude Department of Bone Marrow Transplantation and Cellular Therapy. "NK cells also play an important role in autoimmune disorders, chronic infections and other conditions, so these results will likely have an impact beyond cancer."

Transplant patients benefited regardless of their disease, previous treatment, completeness of the genetic match or other donor characteristics, including whether the donor was a relative, Leung said. Screening for the NK cell variation uses blood collected for the current donor screening process and will not slow donor selection.

NK cells account for less than 15 percent of white blood cells, but play a major role in defending against cancer and viral infections. This research focused on a protein named KIR2DL1, which belongs to the KIR family of proteins. The KIR2DL1 protein is found on NK cells of nearly all healthy individuals.

Proteins are made up of long chains of amino acids. Due to natural genetic variation, there are 25 versions of KIR2DL1, each with a slightly different amino acid sequence.

In an earlier study, Leung and his colleagues discovered that NK cells with one of the KIR2DL1 variations killed cancer cells growing in the laboratory more efficiently than NK cells with a different version of the protein. The potent NK cells featured the amino acid arginine at position 245 of KIR2DL1 rather than the amino acid cysteine in that spot. That discovery led to this study, which offers the first proof that the amino acid difference impacts patient outcomes.

Researchers checked the outcomes of all bone marrow transplants performed at St. Jude during the 10-year period. They found that donor bone marrow with two copies of the gene for the arginine 245 version of KIR2DL1 was associated with a 60 percent decreased risk of death following transplantation and a 62 percent reduced risk of disease progression compared to transplants with donor bone marrow that carried instructions for making just the cysteine version. The transplants involved patients battling both acute lymphoblastic and acute myeloid leukemia as well as other conditions.

St. Jude has patented and licensed a test to identify potential donors with the preferred amino acid. The goal is to make the screening test widely available to other transplant centers as soon as possible, officials said.

The study's first authors are Rafijul Bari of St. Jude and Piya Rujkijyanont, formerly of St. Jude. The other authors are Erin Sullivan, Guolian Kang, Victoria Turner and Kwan Gan, all of St. Jude.

The research was supported in part by grants (CA02176524 and CA021765) from the National Institutes of Health, the Assisi Foundation of Memphis and ALSAC.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>