Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune factor allows viral infections to become chronic

08.03.2016

Many viral diseases tend to become chronic – including infections with the HI virus. In persons affected, the immune response is not sufficient to eliminate the virus permanently. Scientists at the University of Bonn have now identified an immune factor which is partially responsible for this. Their results give rise to hopes for new therapeutic approaches. The work, which included researchers from the University of Cologne and the Technical University of Munich, is being published in the renowned journal "Nature Immunology."

The HI virus triggers the immunodeficiency disease AIDS. The infection has a chronic course – the immune system is not able to get rid of the pathogen. This is due among other things to the fact that the virus directly attacks and destroys certain immune cells known as helper T cells.


Prof. Dr. Joachim L. Schultze and Dr. Marc Beyer (from left) from LIMES Institute of University of Bonn.

(c) Photo: Barbara Frommann/Uni Bonn


In the lab: Dr. Zeinab Abdullah from the Institute of Experimental Immunology at University Hospital Bonn.

(c) Photo: Uniklinik RWTH Aachen

However, many helper T cells are not affected by the virus at all. Nonetheless their function is impaired in the case of AIDS. Normally, helper T cells secrete inflammatory messengers during an infection. As a result of this chemical distress call, killer T cells (the body's own defense troops) become ready to fight and are guided to the site. By contrast, in AIDS and other chronic infections, the helper T cells remain silent. But why is that?

To answer this question, the researchers initially analyzed which genes in the silent helper cells of HIV patients are active. Result: In chronic inflammation, the immune function of the helper T cells is inhibited by various signaling pathways. These signaling pathways in turn are apparently controlled by a single molecule known as tumor necrosis factor (TNF).

This factor appears to be responsible for the weak immune response. "We investigated mice suffering from a chronic viral infection similar to an HIV infection and inactivated the TNF molecule in them," explains Dr. Marc Beyer from Life and Medical Sciences Institute (LIMES) of the University of Bonn. "As a result, the helper T cells worked normally once again. After ten days, the animals had completely eliminated the virus; they were healthy."

Misdirected protective function

Paradoxically, the tumor necrosis factor has exactly the opposite effect in acute viral attacks: It brings the immune system up to full speed and additionally ensures that cells infected with the virus commit suicide. "Therefore, in an acute infection, large quantities of TNF are formed very rapidly," says Dr. Zeinab Abdullah from the Institute of Experimental Immunology at the University Hospital Bonn. "In chronic infections, on the other hand, the body secretes small amounts of TNF over a long period of time. This appears to cause the helper T cells to shut down to some extent."

The researchers suspect that this is a protective mechanism. A prolonged strong immune reaction can in particular destroy healthy tissues as well – with life-threatening consequences. TNF could act as a type of emergency brake which prevents this. Exactly what the tumor necrosis factor does on a molecular level is still largely unknown. The scientists involved now want to examine this question in detail.

The results may establish new therapeutic options in the medium term. Thus there are drugs which inhibit the effect of TNF. These TNF blockers are used in the treatment of autoimmune diseases such as rheumatism, for example. They are to prevent defense cells from attacking the body itself. "Among other things, we want to investigate what effects these drugs have in rheumatism patients who are additionally suffering from a chronic viral infection," says Marc Beyer.

Publication: Tumor-necrosis factor impairs CD4+ T cell-mediated immunological control in chronic viral infection; Nature Immunology; DOI: 10.1038/ni.3399

Media contact information:

Dr. Marc Beyer
LIMES Institute
University of Bonn
Tel. ++49-228-7362792
Email: marc.beyer@uni-bonn.de

Dr. Zeinab Abdullah
Institute of Experimental Immunology
University Hospital Bonn
Tel. ++49-228-28711038
Email: Zeinab.Abdullah@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>