Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells play surprising role in cystic fibrosis lung damage

17.03.2009
Immune cells once thought to be innocent bystanders in cystic fibrosis may hold the key to stopping patients' fatal lung disease. New findings from the Stanford University School of Medicine and Lucile Packard Children's Hospital show that white blood cells called neutrophils respond strongly to conflicting signals from cystic fibrosis patients' lungs, setting up a molecular fracas that may explain the patients' severe lung damage.

"Cystic fibrosis patients have a problem with turning down the inflammatory response in the lungs," said senior study author Rabindra Tirouvanziam, PhD, an instructor in pediatric pulmonary medicine. "We've found that patients' neutrophils become kind of schizophrenic, doing a number of things that are opposite to the textbook view of neutrophils' role."

The research, which will be published online March 23 in the Proceedings of the National Academy of Sciences, opens up new targets for cystic fibrosis treatment, Tirouvanziam said.

Cystic fibrosis is a genetic disease of the lungs and digestive system that affects about 30,000 people in the United States. Patients used to die in childhood, but the life expectancy for a child born today with cystic fibrosis is now 50 to 60 years. Although modern medications and dietary treatments do a good job of controlling the digestive aspects of the disease, patients still suffer serious lung problems. Thick, sticky mucus builds up in their lungs, and chronic inflammation and bacterial infections lead to the breakdown of lung tissue.

For years, scientists believed that cystic fibrosis patients' lung problems started when bacteria became trapped in the excess mucus in their lungs. Neutrophils showed up at the lungs in response to the invasive bacteria, the thinking went. Neutrophils are supposed to engulf and destroy bacteria, but something went wrong and the neutrophils quickly died in the lung, releasing tissue-destroying enzymes, scientists thought.

"This paradigm makes sense in a superficial way, but it has very little to do with clinical reality," Tirouvanziam said. Careful clinical testing in infants with cystic fibrosis has shown that lung inflammation with neutrophils occurs even in the absence of detectable infection. And Tirouvanziam's earlier research showed the immune cells stay alive in the lung for quite a while after they arrive.

So what are the live neutrophils doing in patients' lungs? The new findings surprised Tirouvanziam's team. After collecting fresh neutrophils from cystic fibrosis patients' sputum and analyzing them with fluorescence-activated cell sorting, the team discovered that signals from the patients' lung tissue were reprogramming live neutrophils with conflicting messages. The first set of signals switches on what Tirouvanziam calls "an ancient happiness pathway" — a chain of commands that tell the neutrophils that nutrients are plentiful, and that it's a good time to translate the cell's library of genes into new protein. The second pathway is a cellular alarm system associated with inflammation and stress.

"They're receiving a lot of signals at same time, and we think the happiness signals are messing them up completely," Tirouvanziam said.

His team now suspects the inappropriate activation of the "happiness signal" — the molecular target of rapamycin, or mTOR, cell signaling pathway — may trigger neutrophils to release large quantities of human neutrophil elastase, the enzyme that destroys the elastic fiber of lung tissue. In healthy individuals, neutrophils never release destructive human neutrophil elastase into nearby tissue.

Understanding the sequence of events that release the tissue-chewing enzyme in cystic fibrosis is important, Tirouvanziam said, because it could help researchers find new disease therapies. Drugs now given to improve patients' lung function target symptoms such as difficulty breathing, but don't do anything to alter neutrophils' behavior. Tirouvanziam hopes that will soon change.

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu
http://www.lpch.org

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>