Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cell identity crisis: What makes a liver macrophage a liver macrophage?

04.10.2019

Findings outline fundamental cellular process for the first time, enabling future studies of how macrophage malfunction contributes to liver disease

Every tissue in the human body has an immune cell in it called a macrophage. Macrophages play important roles in the immune system's initial response to bacteria, viruses and wounds. But beyond that, each tissue macrophage also has specialized functions, tuned to the needs of that particular tissue.


These are kupffer cells in a liver.

Credit: Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego

For example, macrophages in the brain, called microglia, help support normal brain development. In the liver, macrophages are called Kupffer cells. They line tiny blood vessels in the liver, where they do a lot of things, including maintaining the body's iron levels and clearing away endotoxins produced by gut bacteria.

Researchers at University of California San Diego School of Medicine wanted to know: If most of these various tissue-specific macrophages all start out from the same precursor cells, how do they become so specialized?

In other words, what makes a Kupffer cell a Kupffer cell and not a microglial cell in the brain or a macrophage in the blood? To find out, they tracked the conversion from precursor cell to Kupffer cell in exquisite detail over two weeks.

Their study, published October 3, 2019 in Immunity, sets the stage for understanding how macrophage specialization gets disrupted by -- or contributes to -- liver disease.

"We've been working on these cell identity regions of the genome for many years," said senior author Christopher K. Glass, MD, PhD, professor of medicine and cellular and molecular medicine at UC San Diego School of Medicine.

"For a long time, we had this idea that maybe looking at how genomic regions change over time could be used as a powerful system to understand how precursor cells differentiate. This is the first proof-of-concept for this approach, and we used it to discover a major cellular mechanism that controls cell development."

Glass led the study with three co-first authors, all members of his lab: Mashito Sakai, MD, PhD, postdoctoral researcher; Ty D. Troutman, PhD, assistant project scientist; and Jason S. Seidman, PhD, who was an MD/PhD graduate student at the time of the study.

Kupffer cells are named for their discoverer, Karl Wilhelm von Kupffer, who first observed them in 1876. (Though it should be noted that he incorrectly assumed they were part of the liver's blood vessel lining.) Kupffer cells are known to be altered in certain liver diseases, though whether that's a cause or effect of the disease is unclear.

In Glass' study, the team engineered special mice with which they could easily clear all Kupffer cells from the liver, without disturbing other cell types. Sensing the loss of Kupffer cells, the livers quickly recruited monocytes -- unspecialized immune cell precursors -- circulating in the blood. The monocytes homed to the recently vacated blood vessel linings.

As the monocytes transformed into Kupffer-like cells over two weeks, the researchers tracked their genetic, molecular and cellular changes. In particular, the team pinpointed the parts of the genome that are switched "on" over the two-week differentiation process.

By characterizing these regions, the researchers could determine the proteins that are being specifically activated to transform the monocytes into Kupffer cells. Then, with these protein identities known, they could infer which signals were coming from the liver to make it all happen. Some of the important cell signaling molecules involved included the Notch ligand DLL4, TGF-beta and LXR ligands.

In the end, the newly specialized liver macrophages weren't quite Kupffer cells, Glass said, because true Kupffer cells are derived from fetal cells during normal development, not from blood monocytes. But these new, monocyte-derived cells were nearly identical in terms of gene expression and function.

"We essentially reverse-engineered how liver tissue instructs precursor cells to specialize into Kupffer cells," Glass said. "And while we found strong evidence for the proteins and signals involved in Kupffer cell differentiation, to prove those proteins do what we think they do, the next step will be to delete the genes that encode those proteins and see if we get the predicted outcomes."

The team is now exploring how Kupffer cell behavior changes in the context of disease, such as nonalcoholic steatohepatitis, a chronic metabolic disorder that causes liver damage.

###

Additional co-authors include: Zhengyu Ouyang, Nathanael J. Spann, Yohei Abe, Kaori M. Ego, Cassi M. Bruni, Johannes C. M. Schlachetzki, Alexi Nott, Hunter Bennett, Jonathan Chang, BaoChau T. Vu, Martina P. Pasillas, Lorane Texari, Sven Heinz, UC San Diego; Zihou Deng, Frederic Geissmann, Memorial Sloan Kettering Cancer Center; Verena M. Link, UC San Diego and Ludwig-Maximilian University of Munich; Bonne M. Thompson, and Jeffrey G. McDonald, UT Southwestern Medical Center.

Media Contact

Heather Buschman
hbuschman@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Heather Buschman | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.immuni.2019.09.002

More articles from Health and Medicine:

nachricht When added to gene therapy, plant-based compound may enable faster, more effective treatments
18.10.2019 | Scripps Research Institute

nachricht Diabetes: A next-generation therapy soon available?
17.10.2019 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>