Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to Reprogram Memory Cells in the Brain

04.04.2018

Tübingen Neuroscientists reprogram brain cells to investigate how place memories are formed

Long-term memory of specific places is stored in the brain in so-called place cells. A team of neuroscientists headed by Dr Andrea Burgalossi of the University of Tübingen’s Werner Reichardt Centre for Integrative Neuroscience (CIN) have now ‘reprogrammed’ such place cells in free-roaming mice, by sending electrical impulses directly to individual neurons.


“Route is being recalculated due to lightning strike": Place cells in the hippocampus are thought to be part of an internal “GPS system”. Stimulation with electrical discharges can reprogram them.

Image: Shimpei Ishiyama

After stimulation, these cells were ‘reprogrammed’ in that their place-related activity switched to the location where the stimulation was performed. The study is now being published in Cell Reports.

How do we know what happened to us yesterday, or last year? How do we recognize places we have been, people we have met? Our sense of past, which is always coupled with recognition of what is currently present, is probably the most important building block of our identity. Moreover, from not being late for work because we could not remember where the office was, to knowing who our friends and family are, long-term memory is what keeps us functional in our daily lives.

It is therefore not surprising that our brain relies on some very stable representations to form long-term memories. One example are memories of places we have seen. To each new place, our brain matches a subset of neurons in the hippocampus (a centrally located brain area crucial to memory formation): place cells.

The memory of a given environment is thought to be stored as a specific combination of place-cell activity in the hippocampus: the place map. Place maps remain stable as long as we are in the same environment, but reorganize their activity patterns in different locations, creating a new place map for each environment.

To date, the mechanisms which underlie this reorganization of place cell activity have remained largely unexplored. In 2016, Tübingen neuroscientists headed by Dr Andrea Burgalossi had shown that silent, dormant cells can be activated by electrical stimulation and become active place cells in the rat brain. Building upon this work, the team has continued investigating the ways place cells are formed and have now presented evidence that place cells are not nearly as stable as had been thought: they can, in fact, even be ‘reprogrammed’.

The setup, which is unique in the world, uses juxtacellular recording and stimulation – a method where a hair-fine electrode measures and induces the tiny currents along individual place cells – in live animals freely roaming an arena in the lab. With this setup, the researchers targeted individual place cells in a mouse’s brain and stimulated them in a different location from where they had origi-nally been active.

In a significant number of cases, they found that the activity of the place cells could be ‘reprogrammed’: the cells stopped firing in the original locations, and became active in the area where the electrical stimulation was delivered. In other words, the reprogrammed place cells would, from now on, become active whenever the mouse wandered to the stimulus location, but remain silent in the old location.

“We challenged the idea that place cells are stable entities. Even in the same environment, we can reprogram individual neurons by stimulating them at specific places”, says Andrea Burgalossi. “This finding provides insights into the basic mechanisms that lead to the formation of new memories”. In the near future, the scientists hope to be able to reprogram multiple neurons simultaneously, so to test the plasticity of place maps as a whole.

“So far, we have reprogrammed single neurons, and it would be fascinating to find what influence this has on place maps as a whole. We would very much like to know what is the minimum number of cells we need to reprogram in order to modify an actual memory trace in the brain.”

Publication:
Maria Diamantaki, Stefano Coletta, Khaled Nasr, Roxana Zeraati, Sohie Laturnus, Philipp Berens, Patricia Preston-Ferrer, Andrea Burgalossi: Manipulating Hippocampal Cell Activity by Single-Cell Stimulation in Freely-Moving Mice. In: Cell Reports (in press) April 3rd, 2018.

Author Contact:
Dr Andrea Burgalossi
University of Tuebingen
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Phone +49 7071 29-88797
andrea.burgalossi@cin.uni-tuebingen.de
www.burgalossilab.com

Press Contact CIN:
Dr. Paul Töbelmann
University of Tuebingen
Science Communication and Public Outreach
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Otfried-Müller-Str. 25
D – 72076 Tübingen
Tel.: +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de
www.cin.uni-tuebingen.de

The University of Tübingen
Innovative. Interdisciplinary. International. Since 1477. These have always been the University of Tübingen’s guiding principles in research and teaching. With its long tradition, Tübingen is one of Germany’s most respected universities. Tübingen’s Neuroscience Excellence Cluster, Empirical Education Research Graduate School and institutional strategy are backed by the German government’s Excellence Initiative, making Tübingen one of eleven German universities with the title of excellence. Tübingen is also home to five Collaborative Research Centers, participates in six Transregional Collaborative Research Centers, and hosts six Graduate Schools.

Our core research areas include: integrative neuroscience, clinical imaging, translational immunology and cancer research, microbiology and infection research, biochemistry and pharmaceuticals research, the molecular biology of plants, geo-environment research, astro- and elementary particle physics, quantum physics and nanotechnology, archeology and prehistory, history, religion and culture, language and cognition, media and education research.

The excellence of our research provides optimal conditions for students and academics from all over the world. Nearly 28,000 students are currently enrolled at the University of Tübingen. As a comprehensive research University, we offer more than 250 subjects. Our courses combine teaching and research, promoting a deeper understanding of the material while encouraging students to share their own knowledge and ideas. This philosophy gives Tübingen students strength and confidence in their fields and a solid foundation for interdisciplinary research.

The Werner Reichardt Centre for Integrative Neuroscience (CIN)
The Werner Reichardt Centre for Integrative Neuroscience (CIN) is an interdisciplinary institution at the University of Tübingen funded by the DFG’s German Excellence Initiative program. Its aim is to deepen our understanding of how the brain generates functions and how brain diseases impair them, guided by the conviction that any progress in understanding can only be achieved through an integrative approach spanning multiple levels of organization.

Antje Karbe | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht First impressions go a long way in the immune system
22.07.2019 | Weizmann Institute of Science

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>