Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How brain cells pick which connections to keep

07.08.2019

Brain cells, or neurons, constantly tinker with their circuit connections, a crucial feature that allows the brain to store and process information. While neurons frequently test out new potential partners through transient contacts, only a fraction of fledging junctions, called synapses, are selected to become permanent.

The major criterion for excitatory synapse selection is based on how well they engage in response to experience-driven neural activity, but how such selection is implemented at the molecular level has been unclear.


Top row: A dendritic spine comes and goes around Day 14. Bottom row: a different spine becomes permanent after about four weeks.

Credit: Nedivi Lab/ MIT Picower Institute

In a new study, MIT neuroscientists have identified the gene and protein, CPG15, that allows experience to tap a synapse as a keeper.

In a series of novel experiments described in Cell Reports, the team at MIT's Picower Institute for Learning and Memory used multi-spectral, high-resolution two-photon microscopy to literally watch potential synapses come and go in the visual cortex of mice - both in the light, or normal visual experience, and in the darkness, where there is no visual input.

By comparing observations made in normal mice and ones engineered to lack CPG15, they were able to show that the protein is required in order for visual experience to facilitate the transition of nascent excitatory synapses to permanence.

Mice engineered to lack CPG15 only exhibit one behavioral deficiency: They learn much more slowly than normal mice, said senior author Elly Nedivi, William R. (1964) & Linda R. Young Professor of Neuroscience in the Picower Institute.

They need more trials and repetitions to learn associations that other mice can learn quickly. The new study suggests that's because without CPG15, they must rely on circuits where synapses simply happened to take hold, rather than on a circuit architecture that has been refined by experience for optimal efficiency.

"Learning and memory are really specific manifestations of our brain's ability in general to constantly adapt and change in response to our environment," Nedivi said. "It's not that the circuits aren't there in mice lacking CPG15, they just don't have that feature, which is really important, of being optimized through use."

Watching in light and darkness

The first experiment reported in the paper, led by former MIT postdoc Jaichandar Subramanian, who is now an assistant professor at the University of Kansas, is a contribution to neuroscience in and of itself, Nedivi said. The novel labeling and imaging technologies implemented in the study, she said, allowed tracking key events in synapse formation with unprecedented spatial and temporal resolution.

The study resolved the emergence of "dendritic spines," which are the structural protrusions on which excitatory synapses are formed, and the recruitment of the synaptic scaffold, PSD95, that signals that a synapse is there to stay.

The team tracked specially labeled neurons in the visual cortex of mice after normal visual experience, and after two weeks in darkness. To their surprise they saw that spines would routinely arise and then typically disappear again at the same rate regardless of whether the mice were in light or darkness.

This careful scrutiny of spines confirmed that experience doesn't matter for spine formation, Nedivi said. That upends a common assumption in the field, which held that experience was necessary for spines to even emerge.

By keeping track of the presence of PSD95 they could confirm that the synapses that became stabilized during normal visual experience were the ones that had accumulated that protein. But the question remained: How does experience drive PSD95 to the synapse? The team hypothesized that CPG15, which is activity dependent and associated with synapse stabilization, does that job.

CPG15 represents experience

To investigate that, they repeated the same light vs dark experiences, but this time in mice engineered to lack CPG15. In the normal mice, there was much more PSD95 recruitment during the light phase than during the dark, but in the mice without CPG15, the experience of seeing in the light never made a difference. It was as if CPG15-less mice in the light were like normal mice in the dark.

Later they tried another experiment testing whether the low PSD95 recruitment seen when normal mice were in the dark could be rescued by exogenous expression of CPG15. Indeed, PSD95 recruitment shot up, as if the animals were exposed to visual experience. This showed that CPG15 not only carries the message of experience in the light, it can actually substitute for it in the dark, essentially "tricking" PSD95 into acting as if experience had called upon it.

"This is a very exciting result, because it shows that CPG15 is not just required for experience-dependent synapse selection, but it's also sufficient," says Nedivi, "That's unique in relation to all other molecules that are involved in synaptic plasticity."

A new model and method

In all, the paper's data allowed Nedivi to propose a new model of experience-dependent synapse stabilization: Regardless of neural activity or experience, spines emerge with fledgling excitatory synapses and the receptors needed for further development. If activity and experience send CPG15 their way, that draws in PSD95 and the synapse stabilizes. If experience doesn't involve the synapse, it gets no CPG15, very likely no PSD95 and the spine withers away.

The paper potentially has significance beyond the findings about experience-dependent synapse stabilization, Nedivi said. The method it describes of closely monitoring the growth or withering of spines and synapses amid a manipulation (like knocking out or modifying a gene) allows for a whole raft of studies in which examining how a gene, or a drug, or other factors affect synapses.

"You can apply this to any disease model and use this very sensitive tool for seeing what might be wrong at the synapse," she said.

###

In addition to Nedivi and Subramanian, the paper's other authors are Katrin Michel and Marc Benoit.

The National Institutes of Health and the JPB Foundation provided support for the research.

Media Contact

David Orenstein
davidjo@mit.edu
617-324-2079

 @MIT_Picower

http://picower.mit.edu 

David Orenstein | EurekAlert!

More articles from Health and Medicine:

nachricht Novel anti-cancer nanomedicine for efficient chemotherapy
17.09.2019 | University of Helsinki

nachricht Researchers have identified areas of the retina that change in mild Alzheimer's disease
16.09.2019 | Universidad Complutense de Madrid

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>