Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins Scientists Discover How an Out-Of-Tune Protein Leads to Heart Muscle Failure

13.09.2012
A new Johns Hopkins study has unraveled the changes in a key cardiac protein that can lead to heart muscle malfunction and precipitate heart failure.

Troponin I, found exclusively in heart muscle, is already used as the gold-standard marker in blood tests to diagnose heart attacks, but the new findings reveal why and how the same protein is also altered in heart failure. Scientists have known for a while that several heart proteins — troponin I is one of them — get “out of tune” in patients with heart failure, but up until now, the precise origin of the “bad notes” remained unclear.

The discovery, published online ahead of print on Sept. 12 in the journal Circulation, can pave the way to new — and badly needed — diagnostic tools and therapies for heart failure, a condition marked by heart muscle enlargement and inefficient pumping, and believed to affect more than 6 million adults in the United States, the researchers say.

Troponin I acts as an on-off switch in regulating heart relaxation and contraction and, in response to, adrenaline — the “flight-fight” response. But when altered, troponin I can start acting as a dimmer switch instead, one that ever so subtly modulates cardiac muscle function and reduces the heart’s ability to pump efficiently and fill with blood, the researchers found.

The Hopkins team used a novel method to pinpoint the exact sites, or epicenters, along the protein’s molecule where disease-triggering changes occur. They found 14 such sites, six of them previously unknown. In revealing new details about the molecular sequence of events leading up to heart failure, the researchers said their work may spark the development of tests that better predict disease risk and monitor progression once the heart begins to fail.

“Our findings pinpoint the exact sites on troponin I’s molecule where disease-causing activity occurs, and in doing so they give us new targets for treatment,” says researcher Jennifer Van Eyk, Ph.D., director of the Johns Hopkins Proteomics Innovation Center in Heart Failure.

In the current study, the team analyzed tissue from the hearts of patients with end-stage heart failure and from deceased healthy heart donors. The 14 sites the researchers identified are sites where troponin I binds with phosphate, a process known as phosphorylation. Phosphate can activate or deactivate many enzymes, thus altering the function of a protein and, in the case of heart failure, ignite disease. The six newly identified sites represent new “hot spots” involved in heart contraction, the researchers say, and could be used as diagnostic markers or a target for treatment to restore function. The Hopkins researchers found that in some sections of the molecule, phosphorylation ratcheted up the dimmer switch, while ratcheting it down in other sections, but it invariably led to muscle dysfunction.

“Our goal would be to zero in on these new sites, gauge risk of heart failure and, hopefully, restore heart muscle function,” Van Eyk says.

Heart failure is a complex progressive disorder, and while cardiac pacemakers can restore or “resynchronize” heart function in many people, about one-third of patients do not improve even with pacemaker therapy in addition to standard medication treatments.

“This is a devastating disorder for which we desperately need new and less invasive therapies,” says senior investigator Anne Murphy, M.D., a cardiologist at Johns Hopkins Children’s Center.

In their analysis, the researchers used a novel technique, called multiple-reaction monitoring (MRM), which pinpoints the exact locations along the protein’s molecule where faulty signaling occurs and disrupts heart muscle function. MRM is an ultra-sensitive type of mass spectrometry that measures the exact size and chemical composition of protein fragments. Phosphorylated protein fragments have different molecular weights than non-phosphorylated ones. In this way, MRM accurately homes in on sites where phosphate is bound to troponin I to modulate heart muscle function.

The researchers found that patients with heart failure had markedly different levels of phosphorylation in certain protein segments compared with healthy heart muscle.

The advantage of MRM analysis — one of the first non-antibody based troponin I tests — is that it can measure phosphorylation levels without the need for antibodies, the traditional method currently used to monitor heart muscle function. The researchers believe that MRM can be developed as a clinical diagnostic test, and the Hopkins team is already working to develop a test that would measure phosphorlyation levels of proteins in the blood and would allow physicians to monitor the progression of the disease as well as predict which heart attack patients will progress to heart failure. About one-third of them do so.

“Right now, we don’t really know which heart attacks patients will develop heart failure and which ones will maintain normal heart muscle function,” Murphy says. “Monitoring specific phosphorylation sites might be one way to help us foresee and forestall this complication on an individual patient basis.”

Other Johns Hopkins investigators on the study included Pingbo Zhang, Ph.D., Weihua Ji, M.S., Cristobal G. dos Remedios, D.Sc., Jonathan Kirk, Ph.D., and David Kass, M.D.

This work was supported by the National Heart Lung and Blood Institute’s Proteomic Initiative contracts NHLBI-HV-10-05(2) and HHSN268201000032C, P01HL081427, P01HL77189-01, and R01 HL63038; by the Johns Hopkins Clinical Translational Science Award (CTSA); and by American Heart Association Postdoctoral Fellowships 10POST4000001 and 11POST7210031.

Founded in 1912 as the children's hospital at The Johns Hopkins Hospital, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s Center is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. Hopkins Children's Center is celebrating its 100th anniversary in 2012.

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinschildrens.org

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>