Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heteractis magnifica sea anemones can help fight Alzheimer's disease

31.08.2018

They contain neuroprotective peptides that slow down the inflammation process and the deterioration of neurons causing the development of Alzheimer's

Heteractis magnifica sea anemones contain neuroprotective peptides that slow down the inflammation process and the deterioration of neurons causing the development of Alzheimer's. There is currently no treatment against this disease.


A magnificent sea anemone riding the current at Madivaru Manta Point.

Credit:Neville Wootton

The Kunitz-type peptide HMIQ3c1was synthesized by scientists in a bacterial system (Escherichia coli) and is a recombinant analog of the peptide contained in the tentacles of tropical sea anemones Heteractis magnifica - marine sediment dwellers belonging to the class of Anthozoa.

The sea anemones were collected near the Seychelles during a scientific marine expedition at the Akademik Oparin scientific and research ship. Genetic studies revealed a new group of Kunitz-type peptides in the sea anemone. Using the structure of the gene coding one of such peptides, a FEFU alumni's scientific team synthesized this peptide's artificial analog in the lab of G.A. Belyakov Pacific Institute of Bioorganic Chemistry.

The study was carried out within the framework of the bilateral FEFU-PIBOC program 04.05.01 "Fundamental and Applied Chemistry" with specialization in medical chemistry.

The synthesized peptide belongs to the new group of IQ-peptides that received its name after two first amino acid residues - isoleucine (I) and glutamine (Q). The substance has neuroprotective properties, i.e. prevents neuron destruction. Therefore, HMIQ3c1 inhibits the development of inflammations including those fitting the Alzheimer's model.

Patients with Alzheimer's disease are subject to various neurological disorders, including disorientation and memory loss. The peptide was tested in the lab on the cells of mouse neuroblastoma. It turned out to reduce the levels of active oxygen forms that cause cell damage. Such forms usually appear after a cell is influenced by the neurotoxin 6-hydroxydopamine, causing neuron death. The same mechanism is observed in human cells.

"While the inflammation process is a normal reaction of a body to any injury, infection, or other external influence, chronic inflammation can cause many serious disorders - not only the Alzheimer's, but also Parkinson's disease, arthritis, pancreatitis, cancer, and other diseases. Proteases are ferments that destroy proteins.

They play an important role in the inflammation process and therefore are amidst the most desired targets for new anti-inflammatory medicinal drugs," explains Elena Leychenko, a senior research associate at PIBOC (the Far Eastern Department of the Russian Academy of Sciences), assistant professor, and lecturer at the chair of bioorganic chemistry and biotechnology of the School of Natural Sciences, FEFU.

The search for chemical compounds to prevent neurons death is an important task for science and medicine. Inhibitors of protease have been found in the bodies of many marine invertebrates and mammals.

Kunitz-type inhibitors are of utmost interest for the scientists as they are not only able to block the destructive ferments but also to react with various receptors and ionic channels. This makes Kunitz-type inhibitors polyfunctional. They can influence several therapeutic targets at once and solve different tasks simultaneously depending on the circumstances.

Sea anemones are a rich source of such inhibitors. In their previous work the scientists from FEFU-PIBOC have already discovered protease inhibitors in Heteractis crispa. The peptides found in H. crispa, as well as the newly discovered peptides from H. magnifica form combinatorial libraries and possess considerable pharmacological potential.

Peptides from these libraries have similar structures and, as a rule, one main function. At the same time, chemical compounds from one library can acquire new functions or change (increase or decrease) their main function due to minor structural differences.

"Sea anemones contain a wide range of biological substances with not only neuroprotective but also anti-cancer properties," says Elena Leychenko. "However, protective properties of these substances and the combinations in which they would work properly require additional studies. The manufacture of new generation drugs may be started only after the completion of all trial stages, including pre- and clinical ones. And this requires extensive funding. If the funds are found, the process would still take 3 to 5 years".

Peptides are chemical compounds that consist of amino acids with high physiological activity allowing them to regulate various biological processes. Peptides are usually divided into several groups by their bioregulatory properties. However, this division is quite arbitrary as many peptides are polyfunctional, i.e. their activity is not limited to one target.

###

Federal State Budget Scientific Institution G.B. Elyakov Pacific Institute of Bioorganic Chemistry (FED RAS);

Federal State Autonomous Educational Establishment of Higher Education Far Eastern Federal University, Vladivostok, Russia;

Katholieke Universiteit Leuven, Leuven, Belgium.

Alexander Zverev | EurekAlert!
Further information:
http://dx.doi.org/10.1134/S106816201804012X

More articles from Health and Medicine:

nachricht Researchers have identified areas of the retina that change in mild Alzheimer's disease
16.09.2019 | Universidad Complutense de Madrid

nachricht Two commonly used uveitis drugs perform similarly in NIH-funded clinical trial
11.09.2019 | NIH/National Eye Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>