Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helper protein worsens diabetic eye disease

28.11.2019

Blocking second protein could lead to better treatment

In a recent study using mice, lab-grown human retinal cells and patient samples, Johns Hopkins Medicine scientists say they found evidence of a new pathway that may contribute to degeneration of the light sensitive tissue at the back of the eye. The findings, they conclude, bring scientists a step closer to developing new drugs for a central vision-destroying complication of diabetes that affects an estimated 750,000 Americans.


Blood vessels that feed the retina

Credit: Akrit Sodhi

The Johns Hopkins research team focused on diabetic macular edema, a form of swelling and inflammation that occurs in people with diabetes when blood vessels in the eye leak their fluids into the portion of the retina that controls detailed vision.

Current therapies for this disease block the protein VEGF, which contributes to abnormal blood vessel growth. However, because the treatment is not adequate for more than half of patients with diabetic macular edema, investigators have long suspected that more factors drive vision loss in these patients.

... more about:
»blood »blood vessel »diabetic »eye disease »receptor

In the new study, the Johns Hopkins researchers say they found compelling evidence that angiopoietin-like 4 is at play in macular edema. The signaling protein is already well known to be a blood vessel growth factor with roles in heart disease, cancer and metabolic diseases, of which diabetes is one.

A report on the findings was published Sept. 23 in The Journal of Clinical Investigation.

Akrit Sodhi, M.D., Ph.D., associate professor of ophthalmology at the Johns Hopkins University School of Medicine and the Johns Hopkins Wilmer Eye Institute, in collaboration with Silvia Montaner, Ph.D., M.P.H., at the University of Maryland, led the research team and was intrigued by angiopoietin-like 4 after finding, in previous studies, elevated levels of this protein in the eyes of people with a variety of vision-related diseases.

In the new study, Sodhi and his team found that angiopoietin-like 4 acts both independent of, and synergistically with, VEGF activity, and they identified a potential way to block it.

The investigators made their discoveries by exposing human blood vessel tissue cells grown in the lab to low levels of VEGF and angiopoietin-like 4. Knowing that low levels of these factors individually did not generally create an effect, the researchers were surprised to find that in combination, low-level VEGF and low-level angiopoeitin-like 4 had a synergistic effect on vascular cell permeability, and doubled the leakage from retinal vessels in mice.

"This told us that you can have subthreshold levels of both molecules, where neither alone is enough to do anything, but together, produce a huge effect," says Sodhi.

The amplifying effect led the researchers to believe that VEGF and angiopoietin-like 4 might share a protein receptor within vascular cells.

However, similar experiments revealed that angiopoietin-like 4 also increases blood vessel formation independently of VEGF. "This could explain why some patients continue to experience vision loss despite treatment with current anti-VEGF therapies," says Sodhi.

To test this, the team looked to see whether the angiopoietin-like 4 protein bound to one of VEGF's receptors in lab-grown human vascular cells. They found that angiopoietin-like 4 did not bind to the classic VEGF receptor that is a target of current anti-VEGF medicines, but another less studied one called neuropilin.

With the newly identified receptor, the researchers next sought to learn whether a lab-grown version of the receptor could block angiopoietin-like 4 before it was able to interact with blood vessel cells.

To do that, they injected a soluble fragment of the neuropilin receptor into the eyes of mice pharmacologically treated to mimic human diabetes, resulting in a twofold increase in retinal vascular leakage. The treated diabetic mice showed approximately half of the blood vessel leakage as mice who did not receive the treatment, similar to the nondiabetic mice.

To further explore the new receptor-based treatment's potential value for human patients, the researchers grew human blood vessel cells in the lab in fluid samples collected from the eyes of patients with diabetic macular edema, to replicate the conditions and growth factors found naturally inside of the patients' eyes.

One group of such cells was exposed to the soluble receptor neuropilin. The researchers say they observed a marked decrease in the diabetic macular edema cells treated with the receptor compared to untreated cells.

"This gives us some confidence that this approach will work in human eyes as well," says Sodhi, although he cautions that clinical use of a treatment based on their findings will require many more years of research.

Next, the researchers hope to take a look at the molecular interactions between angiopoietin-like 4 and the neuropilin receptor. Doing so, says Sodhi, will allow them to create a refined match that can bind up as much vision-threatening angiopoietin-like 4 in the eye as possible.

Sodhi also hopes the team's discovery will have value in treating cancer and cardiovascular disease, the courses of which also are influenced by uncontrolled blood vessel growth.

###

The researchers declare no conflicts of interest.

Other researchers involved in this study include Monika Deshpande, Kathleen Jee and Jordan Vancel of the Johns Hopkins University School of Medicine, and Tao Ma, Deepak Menon, Aumreetam Dinabandhu, Daoyuan Lu and Silvia Montaner of the University of Maryland.

This work was supported by the National Eye Institute (5R01EY025705) and Research to Prevent Blindness.

Rachel Butch | EurekAlert!

Further reports about: blood blood vessel diabetic eye disease receptor

More articles from Health and Medicine:

nachricht How do scars form? Fascia function as a repository of mobile scar tissue
28.11.2019 | Helmholtz Zentrum München - German Research Center for Environmental Health

nachricht Activation of opioid receptor uncovered
28.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

When plants bloom

29.11.2019 | Life Sciences

Harnessing the power of CRISPR in space and time

29.11.2019 | Life Sciences

New evolutionary insights into the early development of songbirds

29.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>