Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy metal paradox could point toward new therapy for Lou Gehrig's disease

01.12.2009
New discoveries have been made about how an elevated level of lead, which is a neurotoxic heavy metal, can slow the progression of amyotrophic lateral sclerosis, or Lou Gehrig's disease – findings that could point the way to a new type of therapy.

The results surprised researchers, since lead is also a known risk factor for ALS. This paradox is still not fully understood, and at this point would not form the basis for a therapy, as lead is toxic for the nervous system. But scientists say the phenomenon may lead to promising alternative approaches to the gene therapies that are now a focus of study.

The research was just published in Neurobiology of Disease, a professional journal, by researchers from the Instituto Clemente Estable and the University of the Republic in Montevideo, Uruguay, and at Oregon State University. The research has been supported by the National Institutes of Health.

"We know that environmental exposure to lead is a risk factor for ALS," said Joseph Beckman, holder of the Ava Helen Pauling Chair in the Linus Pauling Institute and director of the Environmental Health Sciences Center at OSU. "That's why it's so surprising that, according to studies done with laboratory animals, higher levels of lead appear to significantly reduce motor neuron loss and progression of ALS."

Research will continue to explore the underlying mechanisms that may be causing this, Beckman said. But the findings also raise immediate questions about the wisdom of chelation therapy in efforts to treat ALS, which many people have tried despite no evidence that it works. Chelation therapy tries to remove heavy metals from the body, including lead.

"Many people have spent thousands of dollars on chelation therapy to treat ALS, despite a lack of scientific evidence that heavy metals are causing the disease," Beckman said. "These findings about the potential protective mechanism of lead now raise concerns about the rationale for chelation therapy in treating ALS."

ALS is a progressive, fatal neurodegenerative disease that causes muscle weakness and atrophy throughout the body. There is no known cure, and it affects about 2-3 out of every 100,000 people each year.

According to Beckman, some of the findings about the role of lead in this disease evolved out of collaborative research OSU is doing with universities in Uruguay, where significant numbers of children from impoverished families are suffering from lead poisoning caused by setting up camps over abandoned lead factories near Montevideo.

"In this area there are huge problems with lead poisoning, mostly in children," Beckman said. "People are being exposed through their water, food, other environmental sources, and we've worked there for a number of years to learn more about the neurotoxicity of lead exposure."

Lead appears to have some interaction with astrocytes, Beckman said, a special type of cell that is believed to influence the spread of ALS. Astrocytes are a major component of brain cells and, in healthy systems, help to support neurons, defend them against infection and injury and remove neurons when they become damaged.

This delicate process, however, may get disrupted in ALS, at which point astrocytes are believed to play a role in causing inappropriate motor neuron death.

"These systems are very carefully balanced and many factors have to work together," Beckman said. "The proper functioning of astrocytes is essential to life, but their dysfunction may lead to disease. We think that lead somehow is modulating the neuroinflammatory actions of astrocytes and, in the case of ALS, helping to shift their balance back to one of protection, rather than damage."

When that happens, researchers say, it appears that astrocytes can stimulate the production of "vascular endothelial growth factor," which in turn protects motor neurons. Researchers around the world see increases in this growth factor as a possible way to help treat ALS, and most work is now focused on gene therapies to accomplish that. More research is necessary to determine the mechanisms by which lead has this protective effect, which may help to identify pharmacological targets for the disease.

The levels of lead that were therapeutic in the mice have toxic risk in adult humans, the researchers pointed out. However, as more is learned about how lead is affecting ALS, alternatives to lead might be found to accomplish the same goal.

"Available evidence supports the view that astrocytes are key targets of lead and respond to it by inducing neuroprotective pathways," the researchers wrote in their report. "Our results suggest that lead activates a novel pathway able to reduce neuroinflammation and slow neurodegeneration in ALS."

Joe Beckman | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>