Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Genomic catastrophe' may cause normal cells to become cancerous

08.06.2015

Aberrant cell fusion may initiate cancerous processes and tumor formation, according to a new study published in the American Journal of Pathology

Although there is no one established universal cause of cancer, genetic changes are central to its development. The accumulation of spontaneous genetic changes, or mutations, that occur when cells divide can be hastened by exposure to carcinogens such as cigarette smoke (lung cancer) and infectious agents such as the papillomavirus (cervical cancer).


Typical image of fused cell sorted by FACS and visualized by fluorescence microscopy. The fused cell emits both CFSE (green) and SNARF-1 (red) fluorescence; the image represents at least 50 cells examined per experiment. Scale Bar: 5 µm

Courtesy of the American Journal of Pathology

However, some researchers believe that spontaneous mutations are too infrequent, and the link between carcinogens and genetic changes too uncertain, to fully explain the development of some of the most common cancers. The results of this study may provide an explanation: that fusion of one normal cell with another -- as observed in inflammation, infection, and injury from carcinogens -- triggers a 'genomic catastrophe' that converts normal cells to cancer cells and enables tumors to form.

Cell fusion is a process in which one or more cells combine to form a new cell with more than one nucleus. Cell fusion has been postulated as a possible cause for some cancers because it could explain the occurrence of multiple genetic changes thought to underlie cancer.

However, direct evidence that fusion of normal cells by itself could trigger cancer has not been reported. Now, a new study published in The American Journal of Pathology provides the missing link between a single untoward event, cell fusion, and the multiple catastrophic genetic changes that ultimately transform normal cells into cancerous cells. Furthermore, when injected into live animals, these aberrant cells form tumors.

Researchers from the University of Michigan and the Mayo Clinic studied rat IEC-6 intestinal epithelial cells, chosen because they maintain a stable diploid genomic structure (two sets of chromosomes), lack the cellular characteristics of cancer cells, and replicate normally. They also do not form tumors when monitored over many generations.

IEC-6 cells were labeled with either red or green fluorescent dyes. The cells were then exposed to 50 percent polyethylene glycol to encourage cell fusion. The fused cells were identified by the presence of both red and green dyes within one cell, whereas nonfused cells displayed only one color. Fused cells were also larger than non-fused cells.

Investigators made several important observations. First, they showed that fused cells could replicate, with 19 percent of fused IEC-6 cells establishing clones and that with replication the chromosomes from the two cells intermixed. They also observed that 41 percent of the clones had abnormal numbers of chromosomes (aneuploidy), 56percent were near-diploid (40 to 44 chromosomes), and 4 percent were tetraploid (84 chromosomes), whereas the large majority (86 percent) of non-fused cells were diploid.

'These results indicate that cell fusion generates chromosomal instability,' explained lead investigator Jeffrey L. Platt, M.D., professor of surgery and microbiology and immunology, Departments of Microbiology and Immunology and Surgery, University of Michigan (Ann Arbor). Chromosomal instability refers to changes in the number and appearance of chromosomes in a species.

Because aneuploidy and chromosomal abnormalities are commonly observed in cancer, the researchers looked for evidence of DNA damage in the fused clones. The double-strand DNA break marker phosphorylated H2AX revealed breaks in significantly more fusion-derived clones than in nonfused clones (35 percent to 42 percent versus 4 percent to 9 percent, P < 0.0001). This finding suggests that after cells fuse, chromosomal instability might lead to DNA damage and hence to genetic changes that underlie cancer. Consistent with that possibility, fused cells often exhibited the same abnormal growth characteristics as cancer cells.

'The frequency of cell fusion events in vivo is not known, although cell fusion is thought to occur under some circumstances such as cell injury, inflammation, and viral infection. Although fusion of normal cells in vitro and in vivo may be a rare event, this study shows that cell fusion between normal cells can have pathological consequences,' commented noted authority and cancer specialist William B. Coleman, Ph.D., of the Department of Pathology and Laboratory Medicine, Program in Translational Medicine at the University of North Carolina Comprehensive Cancer Center (Chapel Hill). 'The results provide evidence for another molecular mechanism driving neoplastic transformation - genomic catastrophe.'

Perhaps the most exciting observation occurred when fused IEC-6 cells were transplanted into immunodeficient mice. Over the course of 12 weeks, these cells generated tumors in 61 percent (11/18) of the hosts whereas no tumors formed from the parental IEC-6 cells or IEC-6 cells that did not fuse. Furthermore, only those fusion-derived IEC-6 cell clones that had undergone the changes in cellular growth indicative of neoplastic transformation produced tumors in mice.

'We believe one cell fusion event can both initiate malignancy and fuel evolution of the tumor that ensues,' noted lead author Xiaofeng Zhou, Department of Microbiology and Immunology and Surgery and the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, at the University of Michigan (Ann Arbor).

According to Coleman, most cases of spontaneous cancers in humans are thought to derive from cells that sustained random DNA damage or random errors during DNA replication. 'Zhou et al provide evidence for a different mechanism of spontaneous neoplastic transformation. The observations suggest strongly that genomic catastrophe can produce the required and necessary molecular alterations for neoplastic transformation and tumorigenesis in normal founder cells in the absence of selective pressures or ongoing genomic evolution.' Coleman added that further research is needed to determine whether cell fusion events between normal human cell types result in genomic catastrophe and neoplastic transformation.

Eileen Leahy | EurekAlert!

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>