Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic signature reveals new way to classify gum disease

24.03.2014

May allow for earlier diagnosis and personalized treatment of severe periodontitis

Researchers at Columbia University Medical Center (CUMC) have devised a new system for classifying periodontal disease based on the genetic signature of affected tissue, rather than on clinical signs and symptoms.


By looking at the expression of thousands of genes in gum tissue, researchers can now classify most cases of periodontitis into one of two clusters. More severe cases of the disease are represented under the red bar, less severe cases under the blue bar. The findings may allow for earlier diagnosis and more personalized treatment of severe gum disease, before irreversible bone loss has occurred.

Credit: Panos N. Papapanou, D.D.S., Ph.D./Columbia University College of Dental Medicine

The new classification system, the first of its kind, may allow for earlier detection and more individualized treatment of severe periodontitis, before loss of teeth and supportive bone occurs. The findings were published recently in the online edition of the Journal of Dental Research.

Currently, periodontal disease is classified as either "chronic" or "aggressive," based on clinical signs and symptoms, such as severity of gum swelling and extent of bone loss. "However, there is much overlap between the two classes," said study leader Panos N. Papapanou, DDS, PhD, professor and chair of oral and diagnostic sciences at the College of Dental Medicine at CUMC.

"Many patients with severe symptoms can be effectively treated, while others with seemingly less severe infection may continue to lose support around their teeth even after therapy. Basically, we don't know whether a periodontal infection is truly aggressive until severe, irreversible damage has occurred."

Looking for a better way to classify periodontitis, Dr. Papapanou turned to cancer as a model. In recent years, cancer biologists have found that, in some cancers, clues to a tumor's aggressiveness and responsiveness to treatment can be found in its genetic signature. To determine if similar patterns could be found in periodontal disease, the CUMC team performed genome-wide expression analyses of diseased gingival (gum) tissue taken from 120 patients with either chronic or aggressive periodontitis. The test group included both males and females ranging in age from 11 to 76 years.

The researchers found that, based on their gene expression signatures, the patients fell into two distinct clusters. "The clusters did not align with the currently accepted periodontitis classification," said Dr. Papapanou. However, the two clusters did differ with respect to the extent and severity of periodontitis, with significantly more serious disease in Cluster 2. The study also found higher levels of infection by known oral pathogens, as well as a higher percentage of males, in Cluster 2 than in Cluster 1, in keeping with the well-established observation that severe periodontitis is more common in men than in women.

"Our data suggest that molecular profiling of gingival tissues can indeed form the basis for the development of an alternative, pathobiology-based classification of periodontitis that correlates well with the clinical presentation of the disease," said Dr. Papapanou.

The researchers' next goal is to conduct a prospective study to validate the new classification system's ability to predict disease outcome. The team also hopes to find simple surrogate biomarkers for the two clusters, as it would be impractical to perform genome-wide testing on every patient.

The new system could offer huge advantages for classifying people with different types of periodontitis. "If a patient is found to be highly susceptible to severe periodontitis, we would be justified in using aggressive therapies, even though that person may have subclinical disease," said Dr. Papapanou. "Now, we wait years to make this determination, and by then, significant damage to the tooth-supporting structures may have occurred."

###

The paper is titled, "Gingival Tissue Transcriptomes Identify Distinct Periodontitis Phenotypes." The other contributors are M. Kebschull (CUMC), R.T. Demmer (CUMC), B. Grün (University of Linz, Linz, Austria), P. Guarnieri (CUMC), and P. Pavlidis (University of British Columbia, Vancouver, BC, Canada).

The authors declare no financial or other conflicts of interests.

The study was supported by grants from the National Institute of Dental and Craniofacial Research (DE-015649 and DE-021820), the National Center for Advancing Translational Sciences (UL1-TR000040), the National Institutes of Health (R00 DE-018739), Colgate-Palmolive, the German Research Foundation (KFO208, TP6 and TP9), the German Society for Periodontology, the German Society for Oral and Maxillofacial Sciences, the Neue Gruppe, BG by the Austrian Science Fund (V170-N18), and the Michael Smith Foundation for Health Research.

Columbia University College of Dental Medicine, one of the first dental schools in the United States, was founded in 1916. Its mission is to train general dentists and dental specialists in a setting that emphasizes comprehensive dental care; to support research to advance the professional knowledge base; and to provide dental care to the underserved communities of Northern Manhattan. Its faculty has played a leadership role in advancing the inclusion of oral health programs in national health-care policy and has developed novel programs to expand oral care locally and in developing countries. CDM is developing an international program in education and service. For more information, visit dental.columbia.edu.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!

Further reports about: CUMC Dental Genetic Medicine aggressive classification periodontal periodontitis

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>