Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic marker for painful food allergy points to improved diagnosis, treatment

12.03.2012
Researchers have identified a genetic signature for a severe, often painful food allergy – eosinophilic esophagitis – that could lead to improved diagnosis and treatment for children unable to eat a wide variety of foods.

The scientists, from Cincinnati Children's Hospital Medical Center, report in the Journal of Allergy and Clinical Immunology that they have pinpointed a dysregulated microRNA signature for eosinophilic esophagitis (EoE), a disease that also may cause weight loss, vomiting, heartburn and swallowing difficulties.

Interestingly, the dysregulated microRNA was reversible with steroid treatment, according to the study's senior investigator, Marc E. Rothenberg, MD, PhD, director of Allergy and Immunology and the Center for Eosinophilic Disorders at Cincinnati Children's. MicroRNAs are short segments of RNA that can regulate whether genetic messengers (mRNAs) are degraded or translated into protein.

"The identification of biomarkers specific to EoE is a significant advancement for both the diagnosis and treatment of the disease," explains Rothenberg. "The microRNA signature provides an opportunity for more precise analysis of esophageal biopsies."

Rothenberg said children with EoE now undergo anesthesia and invasive endoscopy to diagnose and monitor the allergy. The ability to determine the presence and status of EoE with a noninvasive method, such as blood test that measures microRNAs, would have a positive impact on individuals and families.

In the current study, investigators analyzed esophageal microRNA expression of patients with active EoE, steroid-induced EoE remission, patients with chronic (non-eosinophilic) esophagitis and of healthy individuals. Additionally, they assessed plasma microRNA expression of patients with active EoE, remission of EoE remission and of healthy individuals.

The researchers found that EoE was associated with 32 differentially regulated microRNAs and distinguishable from the non-eosinophilic forms of esophagitis (such as reflux disease). Esophageal eosinophil levels correlated significantly with expression of the most increased microRNAs, miR-21 and miR-223, and most decreased, miR-375. MiR-223 was also one of the most increased microRNAs in the plasma, along with miR-146a and miR-146b.

Notably, the expression of microRNAs dysregulated in patients with active EoE was normalized in patients with EoE who responded to steroid treatment. This suggests a significantly specific microRNA signature for disease activity points to its promise for use as a biomarker for EoE.

Only recently recognized as a distinct condition, the incidence of EoE has been increasing over the past 20 years, as have other allergies. Rothenberg and his laboratory team pioneered research showing EoE's reported incidence is estimated to be at least one in 1,000 people. Its hallmark is swelling and inflammation in the esophagus, accompanied by high levels of immune cells called eosinophils.

EoE can affect people of any age, but is more common among young men who have a history of other allergic diseases, such as asthma and eczema. EoE is often first discovered in children with feeding difficulties and failure to thrive, but it is often misunderstood and not well known, delaying proper diagnosis and treatment.

Several organizations provided funding support for the study, which was released online March 3. These include the National Institutes of Health, the Campaign Urging Research for Eosinophilic Disease (CURED), the Food Allergy Initiative (FAI), and the Buckeye Foundation.

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>