Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019

Genetic differences between the two main strains of the blood cancer-triggering virus have been shown to change the way the virus behaves when it infects white blood cells

Researchers at the University of Sussex have identified how differences in the genetic sequence of the two main strains of the cancer-associated Epstein-Barr virus (EBV) can alter the way the virus behaves when it infects white blood cells.


Solution structures of type 1 and type EBV EBNA2-BS69 complexes determined by small angle X-ray scattering. Type 2 EBNA2 binds an extra BS69 molecule (dimer).

Credit: Michelle West, University of Sussex

When EBV enters white blood cells it drives them to grow rapidly and continuously, making them 'immortal'. In some cases this can lead to the development of lymphoma, a type of blood cancer.

There are two main strains of the virus worldwide and although they can both cause cancer, in the laboratory, one strain (type 1) is able to drive white blood cells to become immortal better than the other (type 2).

While scientists already knew that the different properties of the two strains were caused by a protein called EBNA2, which is produced by EBV, until now they didn't know how it could cause the viruses to act so differently.

In a new research paper published in the journal PLOS Pathogens, Professor Michelle West together with Dr Erika Mancini at the University of Sussex and Professor Paul Farrell at Imperial College London, have identified a molecular reason for the difference in activity between the two strains.

Prof West said: "EBNA2 is kept in check by contact with a protein normally found in white blood cells; BS69. This contact damps down EBNA2 function but does not block it entirely.

"While type 1 has two contact points for BS69 the sequence changes in type 2 result in the creation of a third contact point.

"This additional contact damps down type 2 EBNA2 function to a greater extent, helping to explain why this strain of EBV is less efficient at driving white blood cell growth."

The research, funded by the charity Bloodwise and the Medical Research Council helps shed light on how proteins already present in white blood cells can restrict some strains of the virus more than others.

Prof. West said: "It is assumed that because type 2 strains of EBV are less efficient in the laboratory, these strains of EBV might be less cancer promoting, but oddly there is no evidence to support this.

"We do know that type 2 strains of EBV are more common in certain parts of Asia and Africa, and we could speculate that immortalising white blood cells less efficiently may somehow be an advantage to the virus in infecting people in these parts of the world.

"New research also shows that type 2 strains of EBV are able to infect a different kind of white blood cell, the T cell, so it may be that type 2 strains use an alternative route to enter the body."

Professor West's team, in collaboration with Professor Farrell and Dr White at Imperial College, will now investigate the impact of strain variation on the biology of EBV further, thanks to recent funding for a 3-year project by the Medical Research Council.

Media Contact

Stephanie Allen
s.l.allen@sussex.ac.uk
01-273-873-659

 @sussexunipress

http://www.sussex.ac.uk 

Stephanie Allen | EurekAlert!
Further information:
https://www.sussex.ac.uk/news/research?id=49120

More articles from Health and Medicine:

nachricht A new method of tooth repair? Scientists uncover mechanisms to inform future treatment
09.08.2019 | University of Plymouth

nachricht Take a break! Brain stimulation improves motor learning
08.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>