Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencing shows promise for treating 2 fatal neurological disorders

13.04.2017

NIH-funded preclinical studies suggest designer drug may treat ALS and spinocerebellar ataxia 2

In two studies of mice, researchers showed that a drug, engineered to combat the gene that causes spinocerebellar ataxia type 2 (SCA2), might also be used to treat amyotrophic lateral sclerosis (ALS). Both studies were published in the journal Nature with funding from National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.


In studies of mice, scientists discovered a drug, designed to silence a gene called ataxin 2, may be effective at treating ALS and SCA2.

Courtesy of the NIH/NINDS.

"Our results provide hope that we may one day be able to treat these devastating disorders," said Stefan M. Pulst, M.D., Dr. Med., University of Utah, professor and chair of neurology and a senior author of one the studies. In 1996, Dr. Pulst and other researchers discovered that mutations in the ataxin 2 gene cause spinocerebellar ataxia type 2, a fatal inherited disorder that primarily damages a part of the brain called the cerebellum, causing patients to have problems with balance, coordination, walking and eye movements.

For this study his team found that they could reduce problems associated with SCA2 by injecting mouse brains with a drug programmed to silence the ataxin 2 gene. In the accompanying study, researchers showed that injections of the same type of drug into the brains of mice prevented early death and neurological problems associated with ALS, a paralyzing and often fatal disorder.

"Surprisingly, the ataxin 2 gene may act as a master key to unlocking treatments for ALS and other neurological disorders," said Aaron Gitler, Ph.D., Stanford University, associate professor and senior author of the second study. In 2010, Dr. Gitler and colleagues discovered a link between ataxin 2 mutations and ALS.

The type of drug they used is called an antisense oligonucleotide. Like an incomplete row of teeth on a zipper, these drugs are short sequences of DNA designed to bind to a portion of a gene's instructions carried by a molecule called messenger RNA. This stops cells from manufacturing proteins, a process known as gene silencing.

"Our antisense oligonucleotides prevent cells from reading the blueprint for the ataxin 2 gene," said Daniel R. Scoles, M.D., University of Utah and the lead author of the SCA2 study.

An antisense oligonucleotide drug has been approved by the Food and Drug Administration for treating spinal muscular atrophy, a hereditary disorder that causes arm and leg muscle weakness and deterioration in children. Researchers are conducting early phase clinical trials on the safety and effectiveness of gene silencing drugs to treat several neurological disorders, including Huntington's disease and an inherited form of ALS.

"Antisense oligonucleotides provide researchers with a promising tool for studying the underlying causes of many disorders and developing gene-targeting treatments," said Amelie Gubitz, Ph.D., program director at NINDS.

Mutations in ataxin 2 that are associated with SCA2 cause the gene to have polyglutamine expansions, strings of repeated copies of the three letter genetic code, CAG, which stands for the amino acid glutamine. On average, symptoms appear earlier and are more severe for patients who have longer strings. People who have only 27-33 repeats will not develop SCA2 but have an increased risk for ALS.

Dr. Pulst's team worked with a pharmaceutical company to develop antisense oligonucleotides that silence the ataxin 2 gene rather than the CAG repeats. They then tested oligonucleotides on two lines of mice genetically engineered to have problems associated with SCA2 by programming neurons in the cerebellum to make mutant ataxin 2.

In both lines, the oligonucleotides appeared to be effective. Mice injected with the drug were able to walk on a rotating rod longer than mice that received a placebo. Electrical recordings showed the drug restored the firing patterns of neurons in the cerebellum to normal. In addition to reducing ataxin 2 gene levels, the researchers found that the drug also restored the levels of several genes that appear to be decreased by mutant ataxin 2.

Meanwhile, Dr. Gitler's team used different mice to test the idea of combating ALS by silencing ataxin 2. These mice were genetically modified to manufacture high levels of the human version of TDP-43, a protein that normally regulates genes. The researchers investigated these mice because neurons from ALS patients often contain toxic clusters of TDP-43. The mice rapidly develop problems with walking and die early. Previous studies on yeast and flies by Dr. Gitler's team and his collaborators have suggested that mutant ataxin 2 may control the toxicity of TDP-43.

Compared to placebo, injections of the antisense oligonucleotides into the nervous system of the newborn mice extended their median lifespan by 35 percent and improved their ability to walk, while lowering ataxin 2 gene levels in the brain and spinal cord.

The researchers saw similar results when they eliminated ataxin 2 by crossbreeding the TDP-43 mice with mice that are genetically programmed to have no ataxin 2 gene. The offspring lived longer and walked better than the TDP-43 mice. The brains of the offspring also had fewer toxic TDP-43 clusters than the TDP-43 mice.

"Many years of research on yeast and flies laid the ground work for these exciting results," said Daniel Miller, Ph.D., program director NINDS. "They demonstrate that rigorous studies on simple disease models can lead to powerful insights that help us understand and potentially treat seemingly untreatable disorders."

Drs. Pulst and Gitler agreed that more research needs to be done before the types of antisense oligonucleotides their teams used can be tested in patients. Both labs are currently taking the next steps by conducting further preclinical experiments.

###

Article:

Scoles et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature, April 12, 2017 DOI: 10.1038/nature22044

Becker et al. Therapeutic reduction of ataxin 2 extends lifespan and reduces pathology in TDP-43 mice. Nature, April 12, 2017 DOI: 10.1038/nature22038

This study was supported by grants from the NINDS (NS033123, NS073009, NS081182, NS090930, NS065317, NS093865, NS073660, NS069375), Target ALS Foundation, the Robert Packard Center for ALS Research at Johns Hopkins, the Glenn Foundation, and the DFG. Ionis Pharmaceuticals supplied the authors with all of the antisense oligonucleotides in the described work.

For more information:

http://www.ninds.nih.gov

https://www.ninds.nih.gov/Disorders/All-Disorders/Ataxias-and-Cerebellar-or-Spinocerebellar-Degeneration-Information-Page

https://www.ninds.nih.gov/Disorders/All-Disorders/Amyotrophic-Lateral-Sclerosis-ALS-Information-Page

About NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact

Christopher G. Thomas
nindspressteam@ninds.nih.gov
301-496-5751

 @NINDSnews

http://www.ninds.nih.gov 

Christopher G. Thomas | EurekAlert!

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>