Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi have enormous potential for new antibiotics

20.04.2017

Fungi are a potential goldmine for the production of pharmaceuticals. This is shown by researchers at Chalmers University of Technology, who have developed a method for finding new antibiotics from nature's own resources. The findings - which could prove very useful in the battle against antibiotic resistance - were recently published in the journal, Nature Microbiology.

Antibiotics have saved millions of lives since they were discovered in the 1940s. But recently we've had to learn a new term: antibiotic resistance. More and more bacteria are developing their own protection against antibiotics, thereby becoming resistant to treatment. This will lead to simple infections becoming lethal once again. Our need for new antibiotics is urgent.


While Penicillia are already industrially used in the production of antibiotics, other pharmaceuticals, industrial enzymes and in the manufacturing of food products, new research reveals that their potential for production of novel antibiotics is far from exhausted. Penicillia are naturally found in temperate climates growing on organic matter, including soil, plant material, dung and food products. The isolation of novel bioactive compounds from these species might encompass a source of new antibiotics to fight infectious microorganisms.

Credit: Jens Christian Nielsen

The first antibiotic to be mass-produced was penicillin, derived from Penicillium fungi. In their quest for new antibiotics, Chalmers researchers sequenced the genomes of nine different types of Penicillium species. And the findings are amazing:

"We found that the fungi have enormous, previously untapped, potential for the production of new antibiotics and other bioactive compounds, such as cancer medicines," says Jens Christian Nielsen, a PhD student at the Department of Biology and Biological Engineering.

He works in a research team led by another Chalmers researcher with almost the same name: Professor Jens Nielsen.

In the study, recently published in the journal, Nature Microbiology, the research group scanned the genomes of 24 different kinds of fungi to find genes responsible for the production of various bioactive compounds, like antibiotics. More than 1000 pathways were discovered, showing immense potential for fungi to produce a large variety of natural and bioactive chemicals that could be used as pharmaceuticals.

In about 90 cases, the researchers were able to predict the chemical products of the pathways. As evidence of this, they followed the production of the antibiotic, yanuthone, and identified new fungi able to produce the compound, but also that some species could produce a new version of the drug.

All in all, the study shows vast potential for fungi, not only in producing new antibiotics but also in enabling more efficient production of existing ones - and maybe also more effective versions of the existing ones.

"It's important to find new antibiotics in order to give physicians a broad palette of antibiotics, existing ones as well as new ones, to use in treatment. This will make it harder for bacteria to develop resistance," explains Jens Christian Nielsen.

"Previous efforts to find new antibiotics have mainly focused on bacteria. Fungi have been hard to study - we know very little of what they can do - but we do know that they develop bioactive substances naturally, as a way to protect themselves and survive in a competitive environment. This made it logical to apply our research tools to fungi."

Researchers now have various paths to follow. One way of moving forward could be to look further at the production of the new yanuthone compound. The Chalmers researchers have also drawn up a map that makes it possible to compare hundreds of genes in the continuous evaluation of bioactive products with potent drugs in sight.

How long it would take to launch new antibiotics on the market is impossible to say.

"Governments need to act. The pharmaceutical industry doesn't want to spend money on new antibiotics, it's not lucrative. This is why our governments have to step in and, for instance, support clinical studies. Their support would make it easier to reach the market, especially for smaller companies. This could fuel production," says Jens Christian Nielsen.

Johanna Wilde | EurekAlert!

Further reports about: Penicillium antibiotic antibiotics bacteria bioactive bioactive compounds fungi

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>