Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu and bacteria: Better prognosis for this potentially fatal combination

29.04.2013
Research by scientists from the Max F. Perutz Laboratories points to new treatment options

Scientists from the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna have provided insights into how much harm bacteria can cause to the lung of people having the flu. An infection with both the flu and bacteria can be a fatal combination.


Lung cells infected with influenza virus (stained green) and Legionella (stained red). The nucleus of the cell is stained blue. (Copyright: A. Jamieson)

The results could prompt the development of alternative treatments for flu-related bacterial infections, to improve patient outcome and prevent permanent lung damage. The study is published in the renown journal “Science”.

A potentially fatal combination: the flu and bacteria
The flu is caused by an infection with the influenza virus, which mainly attacks the upper respiratory tract – the nose, throat and bronchi and rarely also the lungs. According to the World Health Organization (WHO), around five to 15 percent of the population are affected by upper respiratory tract infections during seasonal flu outbreaks, and between 250 000-500 000 people die of the illness every year. However, a main cause of death in people having the flu is actually a secondary infection with bacteria.
Influenza increases susceptibility to bacterial infection
When we are sick with influenza virus, for many reasons our susceptibility to bacterial infection is increased. One type of bacteria that the immune system usually prevents from spreading and becoming harmful for us is called Legionella pneumophila. However in some circumstances, such as when we’re infected with influenza virus, Legionella can cause pneumonia, an inflammatory disease of the lung that if left untreated can leave the lung permanently damaged and even cause death. Amanda Jamieson, the lead author of the report and a research fellow in the Department of Microbiology, Immunobiology and Genetics of the University of Vienna, started to study this phenomenon while working in the laboratory of Ruslan Medzhitov, an immunologist at Yale University School of Medicine, USA, and has continued the project in Vienna in collaboration with Dr. Thomas Decker at the MFPL of the University of Vienna and the Medical University of Vienna. “In our model system an infection with influenza and Legionella was fatal. We expected that this would be caused by the bacteria growing and spreading like crazy, but what we actually found was that the number of bacteria didn’t change, which was a big surprise”, says Amanda Jamieson.
Enhancing tissue repair pathways aids treatment of flu-related bacterial infections

Amanda Jamieson and her collaborators could show now that the damage to the lung tissue caused by a co-infection with flu and Legionella is not properly repaired, as the influenza virus suppresses the body’s ability to repair tissue damage. In case of an additional Legionella infection this may lead to fatal pneumonia. However, treatment with drugs that activate tissue repair pathways significantly improved the outcome. This suggests that new treatment options to deal with co-infections of flu and bacteria should be explored. Amanda Jamieson, who will take up an Assistant Professorship at Brown University, USA, in two months, says: “My group will continue to work on tissue repair models and explore different avenues for the treatment of flu/bacterial co-infections.”

Original publication in Science Express:
Amanda M. Jamieson, Lesley Pasman, Shuang Yu, Pia Gamradt, Robert J. Homer, Thomas Decker and Ruslan Medzhitov: Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science (April 2013).
Max F. Perutz Laboratories
The Max F. Perutz Laboratories (MFPL) are a center established by the University of Vienna and the Medical University of Vienna to provide an environment for excellent, internationally recognized research and education in the field of Molecular Biology. Currently, the MFPL host around 60 independent research groups, involving more than 530 people from 40 nations.
Scientific contact
Dr. Amanda Jamieson
Max F. Perutz Laboratories
Department of Microbiology, Immunobiology and Genetics
T +43-1-4277-546 11
amanda.jamieson@univie.ac.at
Further inquiries
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at

Amanda Jamieson | EurekAlert!
Further information:
http://www.univie.ac.at

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>