Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To fix diabetic nerve damage, blood vessels and support cells may be the real targets of treatment

24.06.2011
Results may provide new strategy to prevent amputations

Blood vessels and supporting cells appear to be pivotal partners in repairing nerves ravaged by diabetic neuropathy, and nurturing their partnership with nerve cells might make the difference between success and failure in experimental efforts to regrow damaged nerves, Johns Hopkins researchers report in a new study.

About 20 percent of diabetics experience neuropathy, a painful tingling, burning or numbness in the hands and feet that reflects damage to nerves and sometimes leads to infections and amputation of the toes, fingers, hands and feet over time. Current treatments for diabetic neuropathy focus on relieving symptoms, but don’t address the root cause by repairing nerve damage. Previous research has shown that nerve cells’ long extensions, known as axons, regenerate slowly in diabetics, scuttling various experiments to regrow healthy nerves, explains study leader Michael Polydefkis, M.D., M.H.S., associate professor of neurology at the Johns Hopkins University School of Medicine.

Searching for the reasons behind this slow regeneration, Polydefkis, along with Johns Hopkins assistant professor of neurology Gigi Ebenezer, M.B.B.S., M.D., and their colleagues recruited 10 patients with diabetic neuropathy and 10 healthy people of similar ages and took tiny (3 millimeters) “punch” biopsies from the skin of each participant’s thigh. Several months later, they took 4 mm biopsies from the same site to see how the nerves, blood vessels and nerve-supporting cells, called Schwann cells, were growing back into the healing biopsy site.

In both the neuropathy patients and the healthy individuals, results reported in the June issue of Brain showed that the first to grow into the healing skin were blood vessels, followed soon after by Schwann cells and then axons, which appeared to use the blood vessels as scaffolds. However, the entire process was significantly delayed for the neuropathy patients. Not only was axon regeneration slower compared to the healthy patients, as expected, but blood vessel growth rate was also slower, and fewer Schwann cells accompanied the growing axons into the healing skin.

“Our results suggest that regenerative abnormalities associated with diabetes are widespread,” Polydefkis says. “They’re not just affecting nerves—they’re also affecting blood vessel growth and Schwann cell proliferation.”

Additionally, he says, the findings could explain why blood vessel-related problems, such as heart attacks and strokes, often accompany diabetes. Slowed regeneration of damaged blood vessels could contribute to these conditions as well, he explains.

Polydefkis says the findings provide potential new targets for treating neuropathy and vascular problems. By promoting blood vessel and Schwann cell growth, researchers might be able to speed up axon regeneration and successfully repair damaged nerves and blood vessels, potentially combating diabetic neuropathy and vascular complications simultaneously.

For more information:

http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/profiles/
team_member_profile/8F9C6CF190557439AEBE1CC526273551/Michael_Polydefkis
http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/profiles/
team_member_profile/71E07EEF173725F5DAB48EB31D5DC25F/Gigi_Ebenezer
http://www.hopkinsmedicine.org/neurology_neurosurgery/
Media Contact: Christen Brownlee
410-955-7832; cbrownlee@jhmi.edu

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>