Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings show insulin - not genes - linked to obesity

16.04.2009
Researchers have uncovered new evidence suggesting factors other than genes could cause obesity, finding that genetically identical cells store widely differing amounts of fat depending on subtle variations in how cells process insulin.

Learning the precise mechanism responsible for fat storage in cells could lead to methods for controlling obesity.

"Insights from our study also will be important for understanding the precise roles of insulin in obesity or Type II diabetes, and to the design of effective intervention strategies," said Ji-Xin Cheng, an assistant professor in Purdue University's Weldon School of Biomedical Engineering and Department of Chemistry.

Findings indicate that the faster a cell processes insulin, the more fat it stores.

Other researchers have suggested that certain "fat genes" might be associated with excessive fat storage in cells. However, the Purdue researchers confirmed that these fat genes were expressed, or activated, in all of the cells, yet those cells varied drastically - from nearly zero in some cases to pervasive in others - in how much fat they stored.

The researchers examined a biological process called adipogenesis, using cultures of a cell line called 3T3-L1, which is often used to study fat cells. In adipogenesis, these cells turn into fat.

"This work supports an emerging viewpoint that not all biological information in cells is encoded in the genetic blueprint," said Thuc T. Le, a National Institutes of Health postdoctoral fellow at Purdue who is working with Cheng. "We found that the variability in fat storage is dependent on how 3T3-L1 cells process insulin, a hormone secreted by the pancreas after meals to trigger the uptake of glucose from the blood into the liver, muscle or fat cells."

The findings are detailed in a research paper appearing online in the journal PLoS ONE, published by the Public Library of Science, a non-profit organization of scientists and physicians.

"This varied capability to store fat among genetically identical cells is a well-observed but poorly understood phenomenon," Cheng said

The researchers determined that these differences in fat storage depend not on fat-gene expression but on variations in a cascade of events within an "insulin-signaling pathway." The pathway enables cells to take up glucose from the blood.

"Only one small variation at the beginning of the cascade can lead to a drastic variation in fat storage at the end of the cascade," Cheng said.

The researchers conducted "single cell profiling" using a combination of imaging techniques to precisely compare fat storage in cloned cells having the same fat genes expressed.

Single cell profiling allows researchers to precisely compare the inner workings of individual cells, whereas the conventional analytical approach in biochemistry measures entire populations of cells and then provides data representing an average.

"In this case, we don't want an average. We need to find out what causes fat storage at the single-cell level so that we can compare one cell to another, " Le said. "By profiling multiple events in single cells, we found that variability in fat storage is due to varied rates of insulin processing among cells."

The cell culture used in the research contains cloned mice fibroblast cells.

"This particular type of cell culture has been used to study the molecular control of obesity for the past 35 years," Cheng said. "Researchers have observed tremendous variability in how much fat is stored in cells with identical genes, but no one really knows why. Our findings have shed some light on this phenomenon."

The researchers used a specialized imaging method called coherent anti-Stokes Raman scattering, or CARS, combined with other techniques, including flow cytometry and fluorescence microscopy.

"This multimodal imaging system allows us to correlate different events, like fat storage, gene expression and insulin signaling," Le said. "We can monitor these different events at the same time, and that's why we can determine the mechanism at the single-cell level."

Insulin attaches to binding sites on cell membranes, signaling the cells to take up glucose from the blood. Cells that are said to be resistant to insulin fail to take up glucose, the primary cause of Type II diabetes, a medical condition affecting nearly 24 million Americans. About two-thirds of U.S. adults are overweight, and nearly one-third obese.

The research, which has been funded by the National Institutes of Health, is ongoing. Future work may seek to pinpoint specific events in the insulin-signaling cascade that are responsible for fat storage.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Ji-Xin Cheng, (765) 494-4335, jcheng@purdue.edu
Thuc T. Le, (765) 496-9717, let@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>