Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018

Parkinson’s disease, formerly also referred to as shaking palsy, is one of the most frequent disorders affecting movement and the nervous system. Medical researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have come across a possible cause of the disease – in the patients’ immune system. The scientists have published their research findings in the magazine ‘Cell Stem Cell’ (https://doi.org/10.1016/j.stem.2018.06.015 Cell Stem Cell: Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson’s Disease).

Currently, approximately 4.1 million people suffer from Parkinson’s disease throughout the globe, in Germany alone more than 300,000 people are affected. Typical symptoms of the disease are slowness of movement, rigidity, frequent shaking and an increasingly stooped posture. The cause is the continuous death of nerve cells in the brain, which produce the messenger substance dopamine.


Scientists are working to gain insights into the mechanisms which lead to the loss of nerve cells that produce dopamine. Until now, little has been known about whether human immune cells have an important role to play in Parkinson’s disease.

The stem cell researchers Dr. Annika Sommer, Dr. Iryna Prots and Prof. Dr. Beate Winner from FAU and their team have made a major leap forward in research into this aspect of the disease. The scientists from Erlangen were able to prove that in Parkinson’s disease immune cells from the immune system, so-called t-cells, attack and kill nerve cells which produce dopamine in the midbrain.

The FAU team based its research on a surprising observation: the scientists found an unusually high number of t-cells in the midbrain of Parkinson’s patients. These cells are commonly found in the brains of patients suffering from diseases in which the immune system attacks the brain.

During tests carried out in collaboration with the movement disorders clinic (molecular neurology) at Universitätsklinikum Erlangen (Prof. Jürgen Winkler), researchers discovered an increased number of certain t-cells, specifically Th17 cells, in Parkinson’s patients, similar to patients with autoimmune diseases such as rheumatoid arthritis.

In view of these results, the researchers decided to develop a very unusual cell culture from human cells. A small skin sample was taken from affected patients and healthy test subjects. These skin cells were converted into stem cells, which can develop into any type of cell. The research team then further differentiated these cells into midbrain nerve cells specific to the patient. These midbrain nerve cells were then brought into contact with fresh t-cells from the same patients.

The result: the immune cells of Parkinson’s patients killed a large number of their nerve cells, but this did not appear to be the case with healthy test subjects. Another result gives reason for hope: antibodies which block the effect of Th17 cells, including one antibody which is already being used on a daily basis in the hospital to treat psoriasis, were able to largely prevent the death of the nerve cells.

‘Thanks to our investigations, we were able to clearly prove not only that t-cells are involved in causing Parkinson’s disease, but also what role they actually play,’ explains Prof. Dr. Beate Winner. ‘The findings from our study offer a significant basis for new methods of treating Parkinson’s disease.’

Wissenschaftliche Ansprechpartner:

Prof. Dr. Beate Winner
Phone: +49 9131 8539301
beate.winner@uk-erlangen.de

Phone: +49 9131 8539303
iryna.prots@uk-erlangen.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

Further reports about: FAU autoimmune disease dopamine immune cells nerve cells skin

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>