Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty liver disease and scarring have strong genetic component

02.10.2015

Researchers at the University of California, San Diego School of Medicine say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors. The findings are published online in the journal Gastroenterology.

"The most common known causes of hepatic fibrosis have been viral hepatitis C infections, alcohol abuse, poor diet and obesity and nonalcoholic steatohepatitis or NASH, which resembles alcoholic liver disease but occurs in people who drink little or no alcohol," said first author Rohit Loomba, MD, associate professor of clinical medicine in the Division of Gastroenterology.


This is a micrograph of an inflamed fatty liver. White indicates areas of fat; red are hepatocytes or liver cells. Bluish areas are fibrotic strands.

Image courtesy of James Heilman, MD

"We found, however, that hepatic fibrosis and steatosis (infiltration of liver cells with fat) are strong genetic traits. At around 50 percent heritability, they're more genetic than body mass index."

Loomba and colleagues performed a cross-sectional analysis of 60 pairs of twins residing in Southern California. Forty-two pairs were monozygotic or identical, meaning they developed from a single fertilized egg that split to form two embryos. Eighteen were dizygotic or fraternal, developing from two different eggs, each fertilized by separate sperm cells.

Using two advanced magnetic resonance imaging techniques that quantify fat content in the liver and liver stiffness (a measure of fibrosis), the researchers found that 26 of the 120 participants had nonalcoholic fatty liver disease (NAFLD), which can be a precursor to development of more serious conditions. Hepatic steatosis and liver fibrosis correlated strongly with monozygotic twins, but not with dizygotic pairs.

"This evidence that hepatic steatosis and hepatic fibrosis are heritable traits has major implications," said Loomba. "It means that we can now look for the relevant genes as potential therapeutic targets."

Loomba said the research team plans to expand their research to include the role of the microbiome - the collective genomes of the microorganisms that reside within and on humans, and which also indicates a degree of heritability.

Hepatic steatosis and fibrosis are among the hottest areas in research and medicine at the moment, according to Loomba, with more than a dozen clinical trials currently underway. NAFLD, which is characterized by hepatic steatosis, is the most common cause of chronic liver disease in the United States, affecting 80 to 100 million Americans, with 18 million believed to have the more serious NASH.

###

Co-authors include Nicholas Schork, and Karen E. Nelson, J. Craig Venter Institute; Chi-Hua Chen, Ricki Bettencourt, Ana Bhatt, Brandon Ang, Phirum Nguyen, Carolyn Hernandez, Lisa Richards, Joanie Salotti, Steven Lin, Ekihiro Seki, Claude B. Sirlin, and David A. Brenner, all at UC San Diego.

Funding support for this research came, in part, from the American Gastroenterological Association Foundation, a T. Franklin Williams Scholarship Award, Atlantic Philanthropies, Inc., the John A. Hartford Foundation, the Association of Specialty Professors and the American Gastroenterological Association (grant K23-DK090303).

Media Contact

Scott LaFee
slafee@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>