Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extensive variability in olfactory receptors influences human odor perception

09.12.2013
We each live in a unique odor world

According to Gertrude Stein, "A rose is a rose is a rose," but new research indicates that might not be the case when it comes to the rose's scent.

Researchers from the Monell Center and collaborating institutions have found that as much as 30 percent of the large array of human olfactory receptor differs between any two individuals. This substantial variation is in turn reflected by variability in how each person perceives odors.

Humans have about 400 different types of specialized sensors, known as olfactory receptor proteins, that somehow work together to detect a large variety of odors.

"Understanding how this huge array of receptors encodes odors is a challenging task," says study lead author Joel Mainland, PhD, a molecular biologist at Monell. "The activation pattern of these 400 receptors encodes both the intensity of an odor and the quality – for example, whether it smells like vanilla or smoke – for the tens of thousands of different odors that represent everything we smell.

Right now, nobody knows how the activity patterns are translated into a signal that our brain registers as the odor."

Adding to the complexity of the problem, the underlying amino acid sequence can vary slightly for each of the 400 receptor proteins, resulting in one or more variants for each of the receptors. Each receptor variant responds to odors in a slightly different way and the variants are distributed across individuals such that nearly everyone has a unique combination of olfactory receptors.

To gain a better understanding of the extent of olfactory receptor variation and how this impacts human odor perception, Mainland and his collaborators used a combination of high-throughput assays to measure how single receptors and individual humans respond to odors. The results, published in Nature Neuroscience, provide a critical step towards understanding how olfactory receptors encode the intensity, pleasantness and quality of odor molecules.

The researchers first cloned 511 known variants of human olfactory receptors and embedded them in host cells that are easy to grow in the laboratory. The next step was to measure whether each receptor variant responded to a panel of 73 different odor molecules. This process identified 28 receptor variants that responded to at least one of the odor molecules.

Drilling down, the researchers next examined the DNA of 16 olfactory receptor genes, discovering considerable variation within the genes for discrete receptors.

Using sophisticated mathematical modeling to extrapolate from these results, Mainland predicts that the olfactory receptors of any two individuals differ by about 30 percent. This means that for any two randomly chosen individuals, approximately 140 of their 400 olfactory receptors will differ in how they respond to odor molecules.

To understand how variation in a single olfactory receptor affects odor perception, the researchers studied responses to odors in individuals having different variants of a receptor known as OR10G4. They found that variations in the OR10G4 receptor were related to how people perceive the intensity and pleasantness of guaiacol, a molecule that often is described as having a 'smoky' characteristic.

Moving forward, a current study is relating the olfactory receptor repertoire of hundreds of people with how those people respond to odors. The data will enable the researchers to identify additional examples of how changes in individual receptors affect olfactory perception.

"The long-term goal is to figure out how the receptors encode odor molecules well enough that we can actually create any odor we want by manipulating the receptors directly," said Mainland. "In essence, this would allow us to 'digitize' olfaction."

Also contributing to the research were Casey Trimmer, Lindsey L. Snyder, and Andrew H. Moberly of Monell; Andreas Keller of The Rockefeller University; and Yun R. Li, Ting Zhou, Kaylin A. Adipietro, Wen Ling L. Liu, Hanyi Zhuang, Senmiao Zhan, Somin S. Lee, Abigail Lin and Hiroaki Matsunami, all from Duke University Medical Center.

Research reported in the publication was supported in part by The National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under awards number R01 DC005782, R01 DC012095, R03 DC011373, R01 DC013339, T32 DC000014 and F32 DC008932. A portion of the work was performed using the Monell Chemosensory Receptor Signaling Core and Genotyping and DNA/RNA Analysis Core, which are supported, in part, by funding from the US National Institutes of Health NIDCD Core Grant P30 DC011735. Collection of psychophysical data was supported by grant # UL1 TR000043 from the Clinical and Translational Science Award program at the National Center for Advancing Translational Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A portion of the work was supported by the Defense Advanced Research Project Agency RealNose Project.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. For 45 years, Monell has advanced scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit http://www.monell.org.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>