Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental drug may extend therapeutic window for stroke

18.07.2012
Clinical safety trials in humans to start this summer

A team led by a physician-scientist at the University of Southern California (USC) has created an experimental drug that reduces brain damage and improves motor skills among stroke-afflicted rodents when given with federally approved clot-busting therapy.

Clinical trials to test the safety of the drug in people are expected to start later this summer.

Stroke, which occurs when blood flow to a part of the brain stops, is the No. 4 cause of death and the leading cause of adult disability in the United States. According to the American Stroke Association, the Food and Drug Administration-approved tPA (tissue plasminogen activator) is the best treatment for stroke caused by a blocked artery, but to be effective, it must be administered within three hours after symptoms start. If given outside that three-hour window, tPA has shown serious side effects in animal and human brains, including bleeding and breakdown of the brain's protective barrier.

Generally, according to the American Stroke Association, only 3 to 5 percent of those who suffer a stroke reach the hospital in time to be considered for tPA treatment.

"What tPA does best is to break down clots in the blood vessel and restore blood flow, but it is a powerful enzyme," said Berislav V. Zlokovic, M.D., Ph.D., director of the Zilkha Neurogenetic Institute at the Keck School of Medicine of USC and the study's lead investigator. "After three hours, tPA also damages the blood vessel and causes intracerebral bleeding. We have developed something that not only counteracts the bleeding but also reduces brain damage and significantly improves behavior after stroke. I feel very strongly that this approach will extend the therapeutic window for tPA."

Zlokovic is the scientific founder of ZZ Biotech, a Houston-based biotechnology company he co-founded with USC benefactor Selim Zilkha to develop biological treatments for stroke and other neurological ailments. The company's 3K3A-APC is a genetically engineered variant of the naturally occurring activated protein C (APC), which plays a role in the regulation of blood clotting and inflammation. APC has cell-protecting, anti-inflammatory and anti-coagulant properties; 3K3A-APC has reduced anti-coagulant ability, which minimizes the risk of bleeding induced by normal APC. The protective effect of 3K3A-APC on the lining of blood vessels in the brain further helps prevent bleeding caused by tPA.

In collaboration with the University of Rochester Medical Center, Henry Ford Health Sciences Center, University of Arizona College of Medicine and The Scripps Research Institute, Zlokovic and his team gave tPA — alone and in combination with 3K3A-APC — to mice and rats four hours after stroke. They also gave 3K3A-APC for three consecutive days after stroke. They measured the amount of brain damage, bleeding and motor ability of the rodents up to seven days afterward.

The researchers found that, under those conditions, tPA therapy alone caused bleeding in the brain and did not reduce brain damage or improve motor ability when compared to the control. The combination of tPA and 3K3A-APC, however, reduced brain damage by more than half, eliminated tPA-induced bleeding and significantly improved motor ability.

"Dr. Zlokovic's study really demonstrates the promise of the drug and we are eager to show the same results in human clinical trials," said Kent Pryor, Ph.D., M.B.A., ZZ Biotech's chief operating officer.

Previous research suggests that the experimental drug may also protect against other neurological maladies such as amyotrophic lateral sclerosis and traumatic brain injury as a standalone therapy.

"We are encouraged by these results," said Joe Romano, CEO and president of ZZ Biotech. "In terms of improving treatment for stroke and other neurological diseases, this could be really exciting."

The research was supported by ZZ Biotech and grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (R01-HL063290-14, R01-HL052246-18).

Results of the study, "An activated protein C analog with reduced anticoagulant activity extends the therapeutic window of tissue plasminogen activator for ischemic stroke in rodents," are available online in the journal Stroke, published by the American Heart Association.

Alison Trinidad | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

nachricht Radioisotope couple for tumor diagnosis and therapy
14.05.2019 | Kanazawa University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>