Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise Protects the Heart Via Nitric Oxide

05.05.2011
Exercise both reduces the risk of a heart attack and protects the heart from injury if a heart attack does occur. For years, doctors have been trying to dissect how this second benefit of exercise works, with the aim of finding ways to protect the heart after a heart attack.

Researchers at Emory University School of Medicine have identified the ability of the heart to produce and store nitric oxide as an important way in which exercise protects the heart from injury.

Nitric oxide, a short-lived gas generated within the body, turns on chemical pathways that relax blood vessels to increase blood flow and activate survival pathways. Both the chemical nitrite and nitrosothiols, where nitric oxide is attached to proteins via sulfur, appear to act as convertible reservoirs for nitric oxide in situations where the body needs it, such as a lack of blood flow or oxygen.

The Emory team’s results, published online in the journal Circulation Research, strengthen the case for nitrite and nitrosothiols as possible protectants from the damage of a heart attack.

The first author is John Calvert, PhD, assistant professor of surgery at Emory University School of Medicine. The senior author is David Lefer, PhD, professor of surgery at Emory University School of Medicine and director of the Cardiothoracic Research Laboratory at Emory University Hospital Midtown.

Collaborators included scientists at University of Colorado, Boulder, and Johns Hopkins University.

“Our study provides new evidence that nitric oxide generated during physical exercise is actually stored in the bloodstream and heart in the form of nitrite and nitrosothiols. These more stable nitric oxide intermediates appear to be critical for the cardioprotection against a subsequent heart attack,” Lefer says.

Timing is key – the benefits of exercise don’t last

In experiments with mice, the researchers showed that four weeks of being able to run on a wheel protected the mice from having a blocked coronary artery; the amount of heart muscle damaged by the blockage was less after the exercise period. Importantly, the mice were still protected a week after the wheel was taken away.

The researchers found that voluntary exercise boosted levels of an enzyme that produces nitric oxide (eNOS, endothelial nitric oxide synthase). Moreover, the levels of eNOS in heart tissue, and nitrite and nitrosothiols in the blood as well as heart tissue, stayed high for a week after exercise ceased, unlike other heart enzymes stimulated by exercise. The protective effects of exercise did not extend beyond four weeks after the exercise period was over, however, when nitrite and nitrosothiols in the heart returned to baseline.

In mice that lack the eNOS enzyme, exercise did not protect the heart from a coronary blockage, although these mice appeared to lack the ability to exercise as much as normal mice.

Another molecule that appears to be important for the benefits of exercise is the beta-3-adrenergic receptor, which allows cells to respond to the hormones epinephrine and norepinephrine. All of the beneficial effects of voluntary exercise are lost in mice that are deficient in this receptor. One of the effects of stimulating the receptor appears to be activating eNOS. Additional animal studies are currently underway in Lefer’s lab to determine the potential benefit of beta-3-adrenergic receptor activating drugs following a heart attack.

The research was supported by the American Diabetes Association, the National Institutes of Health and the Carlyle Fraser Heart Center at Emory University Hospital Midtown.

Reference:

J.W. Calvert et al. Exercise protects against myocardial ischemia reperfusion injury via stimulation of beta3-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ. Res. (2011).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Jennifer Johnson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>