Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy drug could aid stroke victims

12.02.2015

Retigabine preserves brain tissue in mouse models of stroke

Retigabine, a drug approved to treat epilepsy, protected the brain against the effects of ischemic stroke in a study conducted at The University of Texas Health Science Center at San Antonio. Findings are in The Journal of Neuroscience.


New research from The University of Texas Health Science Center at San Antonio suggests that an already-approved drug could reduce the debilitating impact of strokes. MIce that had treatment with a drug called retigabine after a stroke were able to traverse a balance beam without difficulty. Untreated mice displayed a pronounced loss of coordination.

Credit

Drs. Mark S. Shapiro, Sonya Bierbower and James D. Lechleiter/The University of Texas Health Science Center at San Antonio

Sonya Bierbower, Ph.D., and Mark S. Shapiro, Ph.D., of the School of Medicine at the UT Health Science Center, compared treated and untreated mice after a stroke. In a balance beam exercise, untreated mice exhibited a pronounced loss of coordination with slips and falls. Retigabine-treated mice had no difficulty with balance, ambulation or turning around on the beam. See the video.

"You couldn't even tell they had a stroke," Dr. Shapiro, professor of physiology and senior author, said. "They ran across the balance beam like gymnasts."

Effects in tissue

Brain tissue of the treated mice showed significantly reduced damage, compared to untreated mice. Protective effects of the medication were observed up to five days after the stroke, said Dr. Bierbower, lead author and postdoctoral fellow in the Shapiro laboratory.

In an ischemic stroke, blood flow to the brain is suddenly cut off because a vessel gets blocked. The lone treatment approved by the U.S. Food and Drug Administration (FDA) is a clot-busting drug called tPA (tissue plasminogen activator). Since tPA severely thins blood, it can't be administered to many stroke patients.

Different system

The initial injury, the stroke, is followed by a cascade of nerve cell death in the brain. Retigabine works on a different system than tPA, acting directly on the nerve cells to minimize damage.

Retigabine and similar agents open specific proteins called potassium ion channels, whose action stops the electrical activity of nerve cells in the brain. "We thought if we could stop the neurons from firing, thus stopping their electrical activity, we could conserve their resources until their blood supply was restored," Dr. Shapiro said. "This proved to be the case."

Off-label use

Because retigabine is FDA approved under the American brand name Ezogabine as an anticonvulsant, physicians may use it off label in stroke patients. FDA approval for specifically this drug as stroke therapy will require a clinical trial to be conducted, and a team of neurologists and neurosurgeons at the Health Science Center is considering it, Dr. Shapiro said.

"As a leading cause of death and disability, stroke poses a major risk to our society," said David F. Jimenez, M.D., FACS, professor and chairman of the Department of Neurosurgery at the Health Science Center. "It is very exciting to see that our collaborative work with our colleagues in physiology could provide a superb way to ameliorate the harmful effects of stroke on our patients."

Drs. Bierbower and Shapiro both received funding from the National Institute of Neurological Disorders and Stroke to conduct this study. A grant from the American Heart Association has been applied for to further this work. James D. Lechleiter, Ph.D., professor of cellular and structural biology in the School of Medicine, is a co-author of the study.

For current news from the UT Health Science Center San Antonio, please visit our news release website, like us on Facebook or follow us on Twitter.

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 13 percent of academic institutions receiving National Institutes of Health (NIH) funding. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced more than 31,000 graduates. The $787.7 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Media Contact

Will Sansom
sansom@uthscsa.edu
210-567-2579

 @uthscsa

http://www.uthscsa.edu/hscnews

Will Sansom | EurekAlert!

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>