Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering team invents lab-on-a-chip for fast, inexpensive blood tests

10.01.2011
Next step will turn blood testing into a smartphone application

While most blood tests require shipping a vial of blood to a laboratory for analysis and waiting several days for the results, a new device invented by a team of engineers and students at the University of Rhode Island uses just a pinprick of blood in a portable device that provides results in less than 30 minutes.

"This development is a big step in point-of-care diagnostics, where testing can be performed in a clinic, in a doctor's office, or right at home," said Mohammad Faghri, URI professor of mechanical engineering and the lead researcher on the project. "No longer will patients have to wait anxiously for several days for their test results. They can have their blood tested when they walk into the doctor's office and the results will be ready before they leave."

With the new lab-on-a-chip technology, a drop of blood is placed on a plastic polymer cartridge smaller than a credit card and inserted into a shoebox-sized biosensor containing a miniature spectrometer and piezoelectric micro-pump. The blood travels through the cartridge in tiny channels 500 microns wide to a detection site where it reacts with preloaded reagents enabling the sensor to detect certain biomarkers of disease.

Several patents are pending on the invention.

Compared to similar devices in development elsewhere, the URI system is much smaller, more portable, requires a smaller blood sample, and is less expensive. While the sensor costs about $3,200, each test costs just $1.50, which is the cost for the plastic cartridge and reagents.

The first cartridges the researchers developed focus on the detection of C-reactive proteins (CRP) in the blood, a preferred method for helping doctors assess the risk of cardiovascular and peripheral vascular diseases. From 2002 to 2004 (the only years for which data are available), the number of CRP tests paid for by Medicare tripled from 145,000 to 454,000, and it is estimated that those numbers have quadrupled since then.

Faghri said that additional cartridges can be designed to detect biomarkers of other diseases. The researchers are already working to engineer the device to detect levels of the beta amyloid protein that can be used as a predictor of Alzheimer's disease. The device can also be engineered to detect virulent pathogens, including HIV, hepatitis B and H1N1 (swine) flu.

The next generation of the device will incorporate a hand-held sensor that will reduce manufacturing costs. Faghri also envisions a further miniaturization of the invention that can be adapted as a smartphone application. By embedding the biosensor in the cartridge and using the computer power of the phone, as well as its wireless communication capabilities, Faghri believes that patients may be able to conduct the tests themselves and have the results transmitted immediately to their doctor's office via their phone. Among many other benefits, this should help to significantly reduce health care costs.

"We are already making progress on many of the steps toward the next generation of the system, and it won't be long before we can begin to commercialize it," Faghri said.

In addition to Faghri, the research team includes URI Adjunct Professor Constantine Anagnostopoulos, Postdoctoral Associate Assem Abolmaaty, graduate students Peng Li, Kelly Cook, Jeremy Cogswell, John Jones, Michael Godfrin, Alex Pytka, Assad Akinfolarin, Hong Chen and Toru Yamada, and undergraduate students Admir Monteiro and Nick DiFillipo, as well as Research Associate Stefanie Demming from the Technical Institute of Braunschweig, Germany.

Primary funding for the project was provided by the National Science Foundation through its Partnership for International Research and Education Program.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>