Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic cigarette flavorings alter lung function at the cellular level

18.05.2015

Certain flavorings used in electronic cigarette liquid may alter important cellular functions in lung tissue, according to new research presented at the 2015 American Thoracic Society International Conference. These changes in cell viability, cell proliferation, and calcium signaling are flavor-dependent. Coupling these results with chemicals identified in each flavor could prove useful in identifying flavors or chemical constituents that produce adverse effects in users.

"The effects of the various chemical components of e-cigarette vapor on lung tissue are largely unknown," said lead author Temperance Rowell, a graduate student in the Cell Biology and Physiology Department of the University of North Carolina at Chapel Hill. "In our study using human lung epithelial cells, a number of cell viability and toxicity parameters pointed to 5 of 13 flavors tested showing overall adverse effects to cells in a dose-dependent manner."

In the study, cultured human airway epithelial cells were exposed to various doses of the 13 e-cigarette liquid flavors for 30 minutes or 24 hours. During the 30 minute exposure test, the flavors Hot Cinnamon Candies, Banana Pudding (Southern Style), and Menthol Tobacco elicited a dose-dependent calcium response and were toxic to the cells at higher doses.

During the 24 hour exposure test, these same three favors decreased cell proliferation and cell viability in a dose-dependent manner.

The toxic effects of these flavorings were not seen with either nicotine or the e-liquid vehicle, which consisted of propylene glycol and vegetable glycerin.

Additional experiments testing the aerosolized product of e-liquid flavors on cultured primary human bronchial epithelial cells are ongoing. Flavors being tested were selected from the findings in this study.

"The specific chemical components underlying the toxic effects of these e-cigarette flavors on cell viability, proliferation, and calcium signaling in airway epithelia are undergoing further study in our lab," said Ms. Rowell. "Given the increasing popularity of flavored e-cigarettes, a better understanding of their ingredients, the potential health risks of these ingredients, and the causes of these risks is urgently needed."

###

Please note that numbers in this release may differ slightly from those in the abstract. Many of these investigations are ongoing; the release represents the most up-to-date data available at press time.

Abstract 67743

Select E-Cigarette Flavors Alter Calcium Signaling, Cell Viability and Proliferation in Lung Epithelia Type: Scientific Abstract Category: 09.09 - COPD: Pathogenesis (CP) Authors: T.R. Rowell1, S. Lee2, R. Tarran2; 1The University of North Carolina at Chapel Hill - Chapel Hill, NC/US, 2University of North Carolina at Chapel Hill - Chapel Hill, NC/US

Abstract Body

Rationale: Flavored e-cigarettes are becoming increasingly popular. However, little is known about their constituent chemicals or their effect on the pulmonary epithelia. We purchased 13 representative flavors of e-cigarette liquid from the Vapor Girl (http://www.thevaporgirl.com/) and tested their effects on airway epithelial calcium signaling, cell viability, and cell proliferation. We know that calcium homeostasis is deranged following tobacco exposure, leading to airway epithelial abnormalities. Since calcium is an important cell signal that regulates secretion, protein trafficking, cell division and death among other functions, we measured changes in cytoplasmic calcium levels following treatments with different flavors.

Methods: Calu3 cells were seeded into 96-well microplates. Cells were exposed to various doses of the 13 e-liquid flavors diluted in cell culture media for 30 minutes or 24 hours. Calcium signaling was measured using Fluo-4, a calcium indicator. Cell viability was assessed using LDH release, propidium iodide uptake, and trypan blue exclusion. Cell proliferation was measured using LDH release. Mass spectrometry was used to determine presence of chemical constituents in each flavor reported.

Results: Flavors such as Hot Cinnamon Candies, Banana Pudding (Southern Style), and Menthol Tobacco evoked a strong calcium response and cytotoxicity in higher doses during the 30 minute exposure. These same flavors also decreased cell proliferation and the ability of cells to respond to a pharmacological agent that releases internal calcium stores in a dose-dependent manner after the 24 hour exposure. Moreover, these effects were not reprised by nicotine or the e-liquid vehicle for chemical constituents (propylene glycol and vegetable glycerin).

Conclusions: Only select flavors of the 13 screened evoked alterations in calcium signaling, which could affect the changes in cell viability and proliferation that were also measured. There could be chemical constituents present in particular flavors that we can identify via mass spectrometry that affect calcium signaling, cell viability and proliferation in airway epithelia. In this way, we aim to determine which chemicals in flavored e-cigarette liquids are associated with toxicity.

Nathaniel Dunford | EurekAlert!

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>