Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drugs, new ways to target androgens in prostate cancer therapy

21.06.2012
Prostate cancer cells require androgens including testosterone to grow. A recent review in the British Journal of Urology International describes new classes of drugs that target androgens in novel ways, providing alternatives to the traditional methods that frequently carry high side effects.
“In many ways, therapies for prostate cancer have led the way in the fight against the disease,” says E. David Crawford, MD, investigator at the University of Colorado Cancer Center and review co-author. “The first effective oral therapy for any cancer was estrogen which was described in 1941. The first cancer biomarker that allowed diagnosis and staging was prostatic acid phosphatase back in 1938. Then there was little progress for over four decades.”

During those 40 years, in which early work in prostate cancer led to Nobel prizes for researchers Charles Huggins and Andrew Schally, other cancer types capitalized on this research, notably developing hormone therapies targeting estrogen in breast cancer. But work in prostate cancer stalled.

“What we realized is that production of androgens like testosterone depends on an intact system in which the brain recognizes hormone levels, signals the pituitary to increase or decrease production, and the pituitary in turn sets the testes in motion. Additionally, by targeting the production of androgens by the testes, we could break that system at many other points,” Crawford says.

For example, estrogen is similar enough to testosterone that administering estrogen to patients tricked the brain into thinking testosterone hormone levels were high – with high presumed hormone levels, the brain sent no production signal to the pituitary. But estrogen therapy led to side effects including breast enlargement.

The next class of drugs, known as luteinizing hormone releasing hormones or LHRHs, intervened in this signaling chain at the level of the pituitary. Just as estrogen keeps the brain from signaling for more testosterone, LHRHs keep the pituitary from passing messages to the testes.

“Because the effects of LHRHs are reversible, this allowed us to use hormone-targeting therapies much earlier in the disease,” Crawford says. “But LHRHs lead to an initial spike in testosterone, before it decreases.” Most patients can withstand this spike, but for some, for example those with bone metastasis in the back, a spike in testosterone could flare the disease and lead to spinal complications.

“It was only about ten years ago that somebody was able to make a usable antagonist,” Crawford says. Instead of first spiking and then lowering testosterone, these LHRH antagonists lead to an immediate drop.

And instead of targeting the signaling pathway that leads to the production of androgens including testosterone, androgen antagonists like Enzalutamide (formerly known as MDV3100), currently in phase III clinical trials, target cells’ ability to trap testosterone that exists in the body – it doesn’t matter how much testosterone is floating around, as long as prostate cancer cells are unable to grab it. Specifically, Enzalutamide and other androgen antagonists are easier to “catch” than the androgens themselves, and so cells grab Enzalutamide and are then unable to grab testosterone.

Also new to the field are drugs that block the production of androgens from all sources which of course includes the testes, but also includes blocking the smaller amounts produced by the adrenals and even by the cancer itself. This class of drugs is called androgen biosynthesis inhibitors, and the first approved is a drug called abiraterone or Zytiga.

“Targeting cells’ androgen receptors is a new and exciting development in the field of prostate cancer therapy,” Crawford says. “As these new drugs make their way from the lab to clinic, we expect the ability to offer androgen antagonists to patients whose cancers have resisted other treatments.”

Dr. Crawford wishes to disclose that he is an advisor to the company Medivation, which manufactures the drug Enzolutamide.

Erika Matich | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>