Drug-resistant MRSA bacteria — here to stay in both hospital and community (PLoS Pathogens)

A col­orized scan­ning elec­tron micro­graph of a white blood cell eat­ing an antibi­otic resis­tant strain of Staphy­lo­coc­cus aureus bac­te­ria, com­monly known as MRSA. (Source: National Insti­tute of Allergy and Infec­tious Dis­eases (NIAID))<br>

The pre­dic­tion that both strains will coex­ist is reas­sur­ing because pre­vi­ous pro­jec­tions indi­cated that the more inva­sive and fast-growing com­mu­nity strains would over­take and elim­i­nate hos­pi­tal strains, pos­si­bly pos­ing a threat to pub­lic health.

Researchers at Prince­ton Uni­ver­sity used math­e­mat­i­cal mod­els to explore what will hap­pen to com­mu­nity and hos­pi­tal MRSA strains, which dif­fer genet­i­cally. Orig­i­nally MRSA, which is short for methicillin-resistant Staphy­lo­coc­cus aureus, was con­fined to hos­pi­tals. How­ever, community-associated strains emerged in the past decade and can spread widely from per­son to per­son in schools, ath­letic facil­i­ties and homes.

Both com­mu­nity and hos­pi­tal strains cause dis­eases rang­ing from skin and soft-tissue infec­tions to pneu­mo­nia and sep­ticemia. Hos­pi­tal MRSA is resis­tant to numer­ous antibi­otics and is very dif­fi­cult to treat, while com­mu­nity MRSA is resis­tant to fewer antibiotics.

The new study found that these dif­fer­ences in antibi­otic resis­tance, com­bined with more aggres­sive antibi­otic usage pat­terns in hos­pi­tals ver­sus the com­mu­nity set­ting, over time will per­mit hos­pi­tal strains to sur­vive despite the com­pe­ti­tion from com­mu­nity strains. Hospital-based antibi­otic usage is likely to suc­cess­fully treat patients infected with com­mu­nity strains, pre­vent­ing the new­comer strains from spread­ing to new patients and gain­ing the foothold they need to out-compete the hos­pi­tal strains.

The researchers made their pre­dic­tions by using math­e­mat­i­cal mod­els of MRSA trans­mis­sion that take into account data on drug-usage, resis­tance pro­files, person-to-person con­tact, and patient age.

Pub­lished Feb­ru­ary 28 in the jour­nal PLOS Pathogens, the study was con­ducted by post­doc­toral researcher Roger Kouyos, now a scholar at the Uni­ver­sity of Zurich, and Eili Klein, a grad­u­ate stu­dent who is now an assis­tant pro­fes­sor in the Johns Hop­kins School of Med­i­cine. They con­ducted the work under the advise­ment of Bryan Gren­fell, Princeton’s Kathryn Briger and Sarah Fen­ton Pro­fes­sor of Ecol­ogy and Evo­lu­tion­ary Biol­ogy and Pub­lic Affairs at Princeton’s Woodrow Wil­son School of Inter­na­tional and Pub­lic Affairs.

Read the arti­cle (open access).

Kouyos R., Klein E. & Gren­fell B. (2013). Hospital-Community Inter­ac­tions Fos­ter Coex­is­tence between Methicillin-Resistant Strains of Staphy­lo­coc­cus aureus. PLoS Pathogens, 9 (2) e1003134. PMID: 23468619

RK was sup­ported by the Swiss National Sci­ence Foun­da­tion (Grants PA00P3_131498 and PZ00P3_142411). EK was sup­ported by Prince­ton Uni­ver­sity (Harold W. Dodds Fel­low­ship), as well as the Mod­els of Infec­tious Dis­ease Agent Study (MIDAS), under Award Num­ber U01GM070708 from the National Insti­tute of Gen­eral Med­ical Sci­ences. BG was sup­ported by the Bill and Melinda Gates Foun­da­tion; the Research and Pol­icy for Infec­tious Dis­ease Dynam­ics (RAPIDD) pro­gram of the Sci­ence and Tech­nol­ogy Direc­torate, Depart­ment of Home­land Secu­rity; and the Fog­a­rty Inter­na­tional Cen­ter, National Insti­tutes of Health.

Media Contact

Catherine Zandonella EurekAlert!

More Information:

http://www.princeton.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors