Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What drives brain changes in macular degeneration?

04.03.2009
MIT study sheds light on underlying neural mechanism

In macular degeneration, the most common form of adult blindness, patients progressively lose vision in the center of their visual field, thereby depriving the corresponding part of the visual cortex of input. Previously, researchers discovered that the deprived neurons begin responding to visual input from another spot on the retina — evidence of plasticity in the adult cortex.

Just how such plasticity occurred was unknown, but a new MIT study sheds light on the underlying neural mechanism.

"This study shows us one way that the brain changes when its inputs change. Neurons seem to 'want' to receive input: when their usual input disappears, they start responding to the next best thing," said Nancy Kanwisher of the McGovern Institute for Brain Research at MIT and senior author of the study appearing in the March 4 issue of the Journal of Neuroscience.

"Our study shows that the changes we see in neural response in people with MD are probably driven by the lack of input to a population of neurons, not by a change in visual information processing strategy," said Kanwisher, the Ellen Swallow Richards Professor of Cognitive Neuroscience in MIT's Department of Brain and Cognitive Sciences.

Macular degeneration affects 1.75 million people in the United States alone. Loss of vision begins in the fovea of the retina — the central area providing high acuity vision that we use for reading and other visually demanding tasks. Patients typically compensate by using an adjacent patch of undamaged retina. This "preferred retinal locus" (PRL) is often below the blind region in the visual field, leading patients to roll their eyes upward to look at someone's face, for example.

The visual cortex has a map of the visual field on the retina, and in macular degeneration the neurons mapping to the fovea no longer receive input. But several labs, including Kanwisher's, previously found that the neurons in the visual cortex that once responded only to input from central vision begin responding to stimuli at the PRL. In other words, the visual map has reorganized.

"We wanted to know if the chronic, prior use of the PRL causes the cortical change that we had observed in the past, according to what we call the use-dependent hypothesis," said first author Daniel D. Dilks, a postdoctoral fellow in the Kanwisher lab. "Or, do the deprived neurons respond to stimulation at any peripheral location, regardless of prior visual behavior, according to the use-independent hypothesis?"

The previous studies could not answer this question because they had only tested patients' PRL. This new study tests both the PRL and another peripheral location, using functional magnetic resonance imaging (fMRI) to scan two macular degeneration patients who had no central vision, and consequently had a deprived central visual cortex.

Because patients habitually use the PRL like a new fovea, it could be that the deprived cortex might respond preferentially to this location.

But that is not what the researchers found. Instead, the deprived region responded equally to stimuli at both the preferred and nonpreferred locations.

This finding suggests that the long-term change in visual behavior is not driving the brain's remapping. Instead, the brain changes appear to be a relatively passive response to visual deprivation.

"Macular degeneration is a great opportunity to learn more about plasticity in the adult cortex." Kanwisher said. If scientists could one day develop technologies to replace the lost light-sensitive cells in the fovea, patients might be able to recover central vision since the neurons there are still alive and well.

Chris Baker of the Laboratory of Brain and Cognition (NIMH) and Eli Peli of the Schepens Eye Research Institute also contributed to this study, which was supported by the NIH, Kirschstein-NRSA, and Dr. and Mrs. Joseph Byrne.

Written by Cathryn Delude, McGovern Institute

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

nachricht Radioisotope couple for tumor diagnosis and therapy
14.05.2019 | Kanazawa University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New flying/driving robot developed at Ben-Gurion University of the Negev

20.05.2019 | Power and Electrical Engineering

A new approach to targeting cancer cells

20.05.2019 | Health and Medicine

5G transmission masts made of wood for an attractive and sustainable cityscape

20.05.2019 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>