Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA can be damaged by very low-energy radiation

14.03.2014

How safe are 'eye-safe' lasers?

"Very low-energy radiation also damages DNA: how safe are "eye-safe" lasers?"

Damage to DNA by high energy radiation constitutes the most lethal damage occurring at the cellular level.

Surprisingly, very low-energy interactions - with OH radicals, for instance - can also induce DNA damage, including double strand breaks.

It is known that single strand breaks in the DNA backbone are amenable to repair but most double strand breaks are irreparable.

The propensity with which slow OH radicals damage DNA depends on their rotational energy: rotationally "hot" OH is more proficient in causing double breaks.

These novel findings are from experiments conducted on DNA in a physiological environment.

Intense femtosecond laser pulses are propagated through water (in which DNA plasmids are suspended), creating plasma channels within water, resulting in generation, in situ, of electrons and OH radicals.

It is shown that use of long laser wavelength light (1350 nm and 2200 nm) ensures only OH-induced damage to DNA is accessed.

It is noteworthy that industry presently characterizes as "eye-safe" lasers that emit at wavelengths longer than 1300 nm.

But it is such wavelengths that are proficient at inducing damage to DNA: how safe is "eye-safe" when DNA in the eye can be readily damaged?

Deepak Mathur | EurekAlert!
Further information:
http://www.tifr.res.in

Further reports about: DNA Tata breaks damage electrons interactions lasers lethal propensity radicals wavelengths

More articles from Health and Medicine:

nachricht A step closer to cancer precision medicine
15.11.2019 | University of Helsinki

nachricht Can 'smart toilets' be the next health data wellspring?
14.11.2019 | Morgridge Institute for Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>