Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinct niches in bone marrow nurture blood stem cells

25.02.2013
In research that could one day improve the success of stem cell transplants and chemotherapy, scientists have found that distinct niches exist in bone marrow to nurture different types of blood stem cells.

Stem cells in the blood are the precursors to infection-fighting white blood cells and oxygen-carrying red blood cells.


Distinct niches exist in bone marrow to nurture different types of blood stem cells, new research shows. In mice bone marrow, blood stem cells, highlighted in blue, are nurtured by support cells shown in red and yellow.

Credit: Daniel Link, M.D.

The research, by a team at Washington University School of Medicine in St. Louis, is reported Feb. 24 in the advance online edition of Nature.

The new findings, in mice, suggest that it may be possible to therapeutically target support cells in a particular niche. On the one hand, a drug that nourishes support cells could encourage blood stem cells to establish themselves in the bone marrow, enabling patients who have had stem cell transplants to more quickly rebuild their immune systems.

On the other, tumor cells are known to hide in the bone marrow, and a drug that disrupts the niche environment may drive cancer cells into the bloodstream, where they are more vulnerable to the damaging effects of chemotherapy.

"Our results offer hope for targeting these niches to treat specific cancers or to improve the success of stem cell transplants," says senior author Daniel Link, MD, the Alan A. and Edith L. Wolff Professor of Medicine. "Already, we and others are leading clinical trials to evaluate whether it is possible to disrupt these niches in patients with leukemia or multiple myeloma."

Working in the mice, the researchers selectively deleted a critical gene, CXCL12, which is known to be important for keeping blood stem cells healthy. Rather than knock out the gene in all of the support cells in a niche, the researchers deleted the gene in specific types of support cells. This led to the discovery that each niche holds only certain blood stem cells that are nourished by a unique set of support cells.

"What we found was rather surprising," Link says. "There's not just one niche for developing blood cells in the bone marrow. There's a distinct niche for stem cells, which have the ability to become any blood cell in the body, and a separate niche for infection-fighting blood cells that are destined to become T cells and B cells."

The findings provide a strong foundation for investigating whether disrupting these niches can improve the effectiveness of chemotherapy.

In a phase II pilot study led by Washington University medical oncologist Geoffrey Uy, MD, assistant professor of medicine, Link is evaluating whether the drug G-CSF can alter the stem cell niche in patients with acute lymphoblastic leukemia whose cancer has recurred or is resistant to treatment. The drug was approved by the Food and Drug Administration more than 20 years ago to stimulate production of white blood cells in patients undergoing chemotherapy, who often have weakened immune systems and are prone to infections.

But Uy and colleagues will evaluate the drug when it is given before chemotherapy. Patients enrolled in the trial at the Siteman Cancer Center will receive G-CSF for five days before chemotherapy, and the investigators will determine whether it can disrupt the protective environment of the bone marrow niche and make cancer cells more sensitive to chemotherapy.

While it's too early to know whether the treatment approach will be successful, Link's new research in mice is bolstered by a companion paper in the same issue of Nature. In that research, Sean Morrison, PhD, director of the Children's Medical Center Research Institute at the University of Texas Southwestern Medical Center in Dallas, used similar molecular methods to also discover distinct niches in the bone marrow for blood stem cells.

"There's a lot of interest right now in trying to understand these niches," Link adds. "Both of these studies add new information that will be important as we move forward. Next, we hope to understand how stem cell niches can be manipulated to help patients undergoing stem cell transplants."

The research is supported by the National Institutes of Health (grants RO1 HL60772 and F30 HL097423)

Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. CXCL12 production by early mesenchymal progenitors is required for haemoatopoietic stem-cell maintenance. Nature. Advance online publication Feb. 24, 2013.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>