Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease diagnosis in just 15 minutes

01.10.2008
Testing for diseases such as cancer and multiple sclerosis could soon be as simple as using a pregnancy testing kit.

A team led by scientists at the University of Leeds has developed a biosensor technology that uses antibodies to detect biomarkers - molecules in the human body which are often a marker for disease – much faster than current testing methods.

The technology could be used in doctors’ surgeries for more accurate referral to consultants, and in hospitals for rapid diagnosis. Tests have shown that the biosensors can detect a wide range of analytes (substances being measured), including biomarkers present in prostate and ovarian cancer, stroke, multiple sclerosis, heart disease and fungal infections. The team also believes that the biosensors are versatile enough to test for diseases such as tuberculosis and HIV.

The technology was developed through a European collaboration of researchers and commercial partners in a 2.7 million Euro project called ELISHA. It features new techniques for attaching antibodies to innovative surfaces, and novel electronic measurement methods that need no reagents or labels.

ELISHA was co-ordinated by Dr Paul Millner from the Faculty of Biological Sciences at the University of Leeds, and managed by colleague Dr Tim Gibson. Says Dr Millner: “We believe this to be the next generation diagnostic testing. We can now detect almost any analyte faster, cheaper and more easily than the current accepted testing methodology.“

Currently blood and urine are tested for disease markers using a method called ELISA (Enzyme Linked Immunosorbant Assay). Developed in the 1970s, the process takes an average of two hours to complete, is costly and can only be performed by highly trained staff.

The Leeds team are confident their new technology – which provides results in 15 minutes or less - could be developed into a small device the size of a mobile phone into which different sensor chips could be inserted, depending on the disease being tested for.

“We’ve designed simple instrumentation to make the biosensors easy to use and understand,” says Dr Millner. “They’ll work in a format similar to the glucose biosensor testing kits that diabetics currently use.”

Professor Séamus Higson, Dean of the Faculty of Medicine and Biosciences, Cranfield Health, and one of the partners within the ELISHA programme, says: “The speed of response this technology offers will be of great benefit to early diagnosis and treatment of many diseases, and will permit testing in de-localised environments such as GP’s surgeries.”

A spinout company – ELISHA Systems Ltd – has been set up by Dr Gibson, commercial partners Uniscan Instruments Ltd and Technology Translators Ltd to bring the technology to market.

Says Dr Gibson: “The analytes used in our research only scratch the surface of the potential applications. We’ve also shown that it can be used in environmental applications, for example to test for herbicides or pesticides in water and antibiotics in milk.”

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk
http://www.immunosensors.com

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>