Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery shows promise against severe side effects

05.11.2010
A team of scientists has found a way to eliminate a debilitating side effect associated with one of the main chemotherapy drugs used for treating colon cancer. The strategy used in their preclinical research—inhibiting an enzyme in bacteria of the digestive tract—could allow patients to receive higher and more effective doses of the drug, known as CPT-11 or Irinotecan.

The study, spearheaded by scientists at the University of North Carolina at Chapel Hill and involving collaborators at Albert Einstein College of Medicine of Yeshiva University and North Carolina Central University in Durham, is described in the November 5 issue of Science.

While the chemotherapy agent CPT-11 has proven useful in attacking colorectal tumors, it can also cause severe diarrhea - limiting the dosage that patients can tolerate and curbing the drug's potential effectiveness. The primary cause of the diarrhea is believed to be beta glucuronidase, an enzyme found in bacteria that live in the gastrointestinal tract.

After the liver has rendered CPT-11 inert, the drug enters the intestine where it's reactivated by the beta glucuronidase of the gut bacteria. The revived CPT-11 irritates the intestine and causes severe diarrhea in up to 30 percent of patients who receive it.

To overcome this crippling side effect, the UNC researchers decided to look for compounds that would block the action of beta glucuronidase without eliminating the gut bacteria, which are important for human health.

"We need to retain our intestinal bacteria – they help us digest food, make critical vitamins and protect us from infection," said Matthew R. Redinbo, Ph.D., who led the UNC research team, and is professor and chair of the chemistry department in the UNC College of Arts and Sciences and a member of the UNC Lineberger Comprehensive Cancer Center. "This targeted approach stops the one bacterial protein thought to cause the drug's devastating side effect, but without damaging the beneficial microbes or the intestines."

Study co-author, Sridhar Mani, M.D., professor of medicine and of genetics at Einstein, said the severe diarrhea caused by CPT-11 can sharply limit the dosage that cancer patients can receive. "Our tests showed conclusively that the inhibitor identified by our UNC colleagues prevented diarrhea in mice that were also receiving CPT-11. We're hopeful that clinical trials will show that administering this inhibitor when patients start taking CPT-11 allows for improvement in the drug's anti-tumor effect in patients with cancer."

The research was funded by the National Institutes of Health, the Golden Leaf Foundation and the State of North Carolina.

Other study co-authors were graduate students Bret D. Wallace and Jillian Orans, and postdoctoral fellow Kimberly T. Lane, Ph.D., all from the UNC chemistry department; Ja Seol Koo, M.D., and Christian Jobin, Ph.D., from the medicine department in the UNC School of Medicine; Hongwei Wang, Ph.D. and Madhukumar Venkatesh, Ph.D., from the departments of medicine, oncology and genetics at Albert Einstein College of Medicine; and John E. Scott, Ph.D., and Li-An Yeh, Ph.D., with the Biomanufacturing Research Institute and Technology Enterprise program at N.C. Central University.

UNC News Services contact:
Patric Lane,
(919) 962-8596,
patric_lane@unc.edu
Albert Einstein contact:
Kimberly Newman,
(718) 430-3101,
sciencenews@einstein.yu.edu
Mani online profile at
http://www.einstein.yu.edu/home/faculty/profile.asp?id=5615

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>