Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of long-lived macrophages in the intestine

31.08.2018

New prospects in fight against neurodegenerative conditions

Macrophages are specialised immune cells that destroy bacteria and other harmful organisms. KU Leuven scientists, Belgium, have come to the surprising conclusion that some macrophages in the intestines of mice can survive for quite some time. Most importantly, these long-lived macrophages are vital for the survival of the nerve cells of the gastrointestinal tract. This sheds new light on neurodegenerative conditions of the intestine, but also of the brain.


Macrophages are not just the vacuum cleaners of the immune system. They also support other cells. These long-lived macrophages in the intestines of mice (in green) make contact with the nerve cells of the gastrointestinal tract (in red). The macrophages provide growth factors for the nerve cells. The nerve cells die off without the macrophages.

Credit: © TARGID - KU Leuven

In the immune system macrophages play the role of PacMan: they are white blood cells that clean up foreign substances by engulfing them. Apart from this, macrophages themselves provide vital growth factors and support for different tissues in the body, allowing them to function and develop properly. As such, these specialised immune cells are soldier and nourisher at the same time. Their proper functioning is immensely important in the intestine, as they have to differentiate between harmful bacteria, harmless bacteria and nutritional components.

Scientists assumed that macrophages in the intestine are short-lived and live for about three weeks at most in both mice and humans before being replaced by new cells. A KU Leuven study now shows that this is not entirely true, explains Professor Guy Boeckxstaens. "We've discovered that a small part of the macrophages in mice is long-lived. We marked certain macrophages and found that they still functioned after at least eight months. They can be found in very specific places in the intestine, particularly in close contact with nerve cells and blood vessels."

What is more, the small group of long-lived macrophages play a very important role in the gastrointestinal tract, adds PhD student Sebastiaan De Schepper. "If the long-lived macrophages don't do their job properly, already after a few days the mice suffer from digestive problems. This leads to constipation or even the complete degeneration of the nervous system in the stomach and intestine." The discovery that long-lived macrophages do indeed exist in the intestine and that they are crucial for the normal functioning of the intestine is, therefore, immensely important.

These new insights offer promising opportunities for further research, concludes Boeckxstaens: "Next, we want to study the role of long-lived macrophages in human diseases where nerve cells of the intestine are affected, for instance in obese and diabetic patients with abnormal gastro-intestinal function. Moreover, the results can also be meaningful for brain research. In the brain, we have microglia, similar long-lived macrophages that play an important role in neurological conditions such as Alzheimer's and Parkinson's disease. Scientists currently believe that nerve cells in these patients die off because microglia do not provide sufficient care. Maybe one day research of the intestine can offer us a better understanding of these brain conditions."

###

About KU Leuven

KU Leuven is Europe's most innovative university in the latest Reuters ranking. Located in Belgium, it is dedicated to research, education, and service to society. KU Leuven is a founding member of the League of European Research Universities (LERU) and has a strong European and international orientation. Its scientists conduct basic and applied research in a comprehensive range of disciplines. The university welcomes more than 50,000 students from over 140 countries. The KU Leuven Doctoral Schools train approximately 4,500 PhD students. http://www.kuleuven.be/english

Guy Boeckxstaens | EurekAlert!
Further information:
https://nieuws.kuleuven.be/en/content/2018/discovery-of-long-lived-macrophages-in-the-intestine
http://dx.doi.org/10.1016/j.cell.2018.07.048

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>