Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a novel heart and gut disease

06.10.2014

The genetic mutation involved would date back to 12th century Vikings

Physicians and researchers at CHU Sainte-Justine, Université de Montréal, CHU de Québec, Université Laval, and Hubrecht Institute have discovered a rare disease affecting both heart rate and intestinal movements. The disease, which has been named "Chronic Atrial Intestinal Dysrhythmia syndrome" (CAID), is a serious condition caused by a rare genetic mutation. This finding demonstrates that heart and guts rhythmic contractions are closely linked by a single gene in the human body, as shown in a study published on October 5, 2014 in Nature Genetics.

The research teams in Canada have also developed a diagnostic test for the CAID syndrome. "This test will identify with certainty the syndrome, which is characterized by the combined presence of various cardiac and intestinal symptoms," said Dr. Gregor Andelfinger, a pediatric cardiologist and researcher at CHU Sainte-Justine "The symptoms are severe, and treatments are very aggressive and invasive, added Dr. Philippe Chetaille, a pediatric cardiologist and researcher at the university hospital CHU de Québec." At cardiac level, patients suffer primarily from a slow heart rate, a condition which will require the implantation of a pacemaker for half of them, often as early as in their childhood. At digestive level, a chronic intestinal pseudo-obstruction will often force patients to feed exclusively intravenously. Furthermore, many of them will also have to undergo bowel surgery.

Discovery of the CAID Syndrome

By analysing the DNA of patients of French-Canadian origin and a patient of Scandinavian origin showing both the cardiac and the gastrointestinal condition, the researchers were able to identify a mutation in the gene SGOL1 that is common to all of patients showing both profiles. "To lift any doubts concerning the role of the identified mutation, we also made sure it was ruled out in people showing only one of the profiles," said Dr. Andelfinger. Similarly, Dr. Jeroen Bakkers, at Hubrecht Institute, in The Netherlands, who also collaborated to the project, studied zebrafish with the same gene mutation "The mutated fish showed the same cardiac symptoms as humans, which confirms the causal role played by SGOL1", he continued.

A Transatlantic Founder effect The research team traced back the genealogy of eight patients of French-Canadian origin using the Quebec population BALSAC historical data base. They were able to identify a common ancestry dating back to the 17th century, more precisely a founder couple married in France in 1620. Molecular genetic tests also proved that the identified French-Canadian and the Swedish mutations share the same origin, suggesting the existence of a founder effect and the major role played by migration of populations. According to the investigators' calculations, the genetic legacy would date back to the 12th century, then following the migration route of the Vikings from Scandinavia to Normandy, then that of the settlers who migrated to New France in the 17th century.

An Unsuspected Role for SGOL1

The researchers believe that the mutation of SGOL1 acts mechanistically to reduce the protection of specific nerve and muscle cells in the gut and the heart, causing them to age prematurely due to an accelerated replication cycle. Their findings suggest an unsuspected role for SGOL1 in the heart's ability to maintain its rhythm throughout life. The specific role played by the gene and the impact of its mutation will take center stage in future investigations of the research group. Along with physicians and patients, the group hopes their understanding of the disease will help them identify new avenues for treatments specifically targeting the underlying genetic and molecular causes.

###

About the Study

The study "Mutations in a novel because SGOL1 cohesinopathy affecting heart and gut rhythm" was published in Nature Genetics on October 5, 2014. Funding for this project provided by the FORGE Canada Consortium, the Canadian Institutes of Health Research, the Ontario Genomics Institute, Genome Quebec, Genome British Columbia, and André Foundation Nussia Aisenstadt, GO Foundation, Leducq Foundation and Association des pseudo-obstructions intestinales chroniques, France.

About the Researchers

Dr. Gregor Andelfinger, MD is a pediatric cardiologist at CHU Sainte-Justine, a researcher at Sainte-Justine University Hospital Research Center in the Fetomaternal and Neonatal Pathologies axis, and Associate Research Professor in the Department of Pediatrics at Université de Montréal. He also holds a Research Chair in cardiovascular genetics.

Dr. Philippe Chetaille, MD, MSc, is a pediatric cardiologist at CHU de Québec, an Associate Researcher at CHU de Québec Research Centre and a Full Associate Professor in the Department of Pediatrics at the Université Laval

Dr. Jeroen Bakkers, PhD, is a senior principle investigator of the Cardiac Development and Genetics group at the Hubrecht Institute in Utrecht, the Netherlands.

Interviews and Filming Opportunities

Researchers, physicians, patients and parents are available for interviews on request.

William Raillant-Clark | Eurek Alert!

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>