Discovery helps explain why chemo causes drop in platelet numbers

Platelets are formed by a process called 'shedding' where small fragments break off megakaryocytes (large cells normally found in the bone marrow).

Drs Emma Josefsson, Chloé James and Benjamin Kile from the institute's Molecular Medicine and Cancer and Haematology divisions have been investigating how the survival of platelet- forming megakaryocytes is controlled at a molecular level.

The life-or-death decisions of cells are controlled by the Bcl-2 family of proteins. Some 'pro-death' Bcl-2 family proteins cause cells to die, while an opposing 'pro-survival' faction prevents cell death, allowing cells to survive.

In the past decade it has been thought that platelets are formed by megakaryocytes through a process similar to cell death, Dr Josefsson said. “Our research tested this assumption by examining the molecules that are required for programmed cell death. We found that, at a molecular level, platelet formation does not occur by a death-like process.

“We found that pro-death Bcl-2 family proteins were not required for platelet formation from megakaryocytes,” Dr Josefsson said. “In fact, pro-survival Bcl-2 family proteins are essential for keeping megakaryocytes alive so they can make platelets.”

Low platelet numbers are a side-effect of chemotherapy and, whilst this has long been ascribed to the death of megakaryocytes and their precursors, the mechanisms responsible have remained unclear. The research team showed that chemotherapy kills megakaryocytes by its action on Bcl-2 family proteins, Dr Josefsson said. “Our work has shown that chemotherapy activates 'pro-death' Bcl-2 proteins to kill megakaryocytes, meaning patients are less capable of producing platelets as they recover from cancer treatment.” The research was published today in the Journal of Experimental Medicine.

Institute scientist Professor Don Metcalf has researched blood formation for the past 50 years and was part of the research team. “For the past decade many researchers around the world have been wondering what role Bcl-2-family proteins play in platelet formation,” he said. “This study is important for resolving a longstanding debate about platelet formation, and in the long term may lead to new strategies to prevent chemotherapy-induced thrombocytopenia (a deficiency in platelets).”

The research was supported by the National Health and Medical Research Council, the Sylvia and Charles Viertel Foundation, the Leukaemia Foundation of Australia, the Leukemia & Lymphoma Society (USA), the Swedish Research Council, the European Molecular Biology Organisation, the Victorian Cancer Agency, Cancer Council Victoria, the Australian Cancer Research Fund, the Victorian Government and the Australian Government.

Media Contact

Penny Fannin EurekAlert!

More Information:

http://www.wehi.edu.au

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Peptides on Interstellar Ice

A research team led by Dr Serge Krasnokutski from the Astrophysics Laboratory at the Max Planck Institute for Astronomy at the University of Jena had already demonstrated that simple peptides…

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

Partners & Sponsors