Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could help diabetics and others with slow-to-heal wounds

19.04.2010
A new discovery about the wound-healing process could lead to better treatments for diabetics and other patients who have wounds that are slow to heal.

Loyola University Health System researchers found that certain immune system cells slow the wound-healing process. Thus, it might be possible to improve healing by inactivating these immune system cells, said Elizabeth Kovacs, PhD, who heads the laboratory team that made the discovery.

The findings by Kovacs and colleagues are reported online, in advance of print, in the Journal of Surgical Research.

In the study, the immune system cells that impeded the healing process are called natural killer T (NKT) cells. NKT cells perform beneficial functions such as killing tumor cells and virus-infected cells. However, researchers discovered that NKT cells also migrate to wound sites and impede the healing process.

Kovacs and colleagues used an animal model to examine the effects of NKT cells on healing. Healing was significantly slower in normal mice that had NKT cells than it was in a special breed of mice that lacked NKT cells.

"We demonstrated that early wound closure was accelerated in the absence of NKT cells," Kovacs and colleagues wrote. "Importantly, we also made the novel observation that NKT cells themselves are a constituent of the early wound inflammatory infiltrate."

Certain conditions, such as diabetes and infections, can slow or prevent wounds from healing. The study found that NKT cells may be at least partially to blame. Researchers don't know how NKT cells slow healing. But they believe they may be able to inactivate NKT cells using an antibody. They are testing this prediction in a follow-up study.

Kovacs is a professor and vice chair of research in the Department of Surgery at Loyola University Chicago Stritch School of Medicine. She also is director of research of Loyola's Burn & Shock Trauma Institute.

Co-authors of the study are Jessica Palmer, Julia Tulley, Dr. John Speicher, Douglas Faunce, PhD, first author Dr. David Schneider and Dr. Richard Gamelli. Schneider is a resident at Loyola and Gamelli is dean of the Stritch School of Medicine and director of the Burn & Shock Trauma Institute.

The study was supported by the National Institutes of Health (NIH) and by the Ralph and Marion C. Falk Medical Research Trust.

Scott Somers, Ph.D., who manages wound healing research and training grants supported by the NIH's National Institute of General Medical Sciences, said, "Beyond the novel finding of a fundamental mechanism controlling wound healing, this work also highlights the contributions of physician-scientists like Dr. Schneider, a surgical resident who is training to do hypothesis-based, cutting-edge scientific investigation."

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>